• Title/Summary/Keyword: Fan Efficiency

Search Result 439, Processing Time 0.028 seconds

A Study on Aerodynamic and Noise Characteristics of a Sirocco Fan for Residential Ventilation (주거환기용 시로코홴의 공력 및 소음 특성 연구)

  • Kim, Jin-Hyuk;Song, Woo-Seog;Lee, Seung-Bae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • This paper presents a procedure for the aerodynamic and aeroacoustic characteristics of a sirocco fan. For the aerodynamic and aeroacoustic analyses of the sirocco fan, three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations are solved with a shear stress transport turbulence model for turbulence closure. The flow analyses were performed on a hexahedral grid using a finite-volume solver. The validation of the numerical results is performed by comparing with experimental data for the pressure, efficiency and power. The internal flow analyses of the sirocco fan are performed to understand the unstable flow phenomenon on the casing for the wall pressure and internal flow characteristics at each position. It was found that fluctuation of pressure and locally concentrated noise source are observed near the cut-off and expansion regions of the casing.

A Study on a Flux Switching Motor Drive for Fan Application

  • Kim, Nam-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.49-56
    • /
    • 2009
  • A new class of electronically commutated brushless motors, the flux-switching motor (FSM), is gradually emerging for use in power tools and household appliances especially fan and pump application thanks to green policies, This motor offers such advantages as high-power density and relatively high efficiency compare to induction motors, and low cost and simple motor structure compare to the BLDC motor. This paper presents the principle of the FSM and design of the 12/6 pole FSM drive system for fan application. Test results of the prototype motor are provided to verify the validity of the fan application with a TMS320F2812 DSP and inverter.

Research for Environmentally Friendly Exhaust Fan BLDC Motor Controller (친환경 환풍기를 위한 BLDC모터 제어기 연구)

  • Jung, Youngdeuk
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.403-410
    • /
    • 2015
  • This study documents the 3-phase BLDC(Brushless DC) motor to improve conventional exhaust fan motor. Energy efficiency, noise, and air pollution reduction for the high-performance vibration of the BLDC motor has been used in many fields. It is necessary to achieve the information of rotor position for driving 3-phase type brushless DC motor. It is also necessary that the PWM control algorithm design for a MOSFET driver to control the motor speed control for each of three phases. BLDC motors for exhaust fan, we studied the controller and software. The control circuit and motor control program through which Exhaust fan up close and person can be used safely and protect the environment.

Multi-Objective Optimization of a Fan Blade Using NSGA-II (NSGA-II 를 통한 송풍기 블레이드의 다중목적함수 최적화)

  • Lee, Ki-Sang;Kim, Kwang-Yong;Samad, Abdus
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2690-2695
    • /
    • 2007
  • This work presents numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis. Reynolds-averaged Navier-Stokes (RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

  • PDF

Performance Prediction and Flow Field Calculation for Airfoil Fan with Impeller Inlet Clearance

  • Kang, Shin-Hyoung;Cao, Renjing;Zhang, Yangjun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.226-235
    • /
    • 2000
  • The performance prediction of an airfoil fan using a commerical code, STAR/CD, is verified by comparing the calculated results with measured performance data and velocity fields of an airfoil fan. The effects of inlet tip clearance on performance are investigated. The calculations overestimate the pressure rise performance by about 10-25 percent. However, the performance reduction due to tip clearance is well predicted by numerical simulations. Main source of performance decrease is not only the slip factor but also impeller efficiency. The reduction in performance is 12-16 percent for 1 percent gap of the diameter. The calculated reductions in impeller efficiency and slip factor are also linearly proportional to the gap size. The span-wise distributions of phase averaged velocity and pressure at the impeller exit are strongly influenced by the radial gap size. The radial component of velocity and the flow angle increase over the passsage as the gap increases. The slip factor decreases and the loss increases with the gap size. The high velocity of leakage jet affects the impeller inlet and passage flows. With a larger clearance, the main stream moves to the impeller hub side and high loss region extends from the shroud to the hub.

  • PDF

A Study of rotor-stator interaction in an axial fan (축류송풍기의 동익과 정익 사이 간격변화에 따른 유동간섭에 관한 연구)

  • Rim, In-Won;Seon, Ho-Su;Joo, Won-Gu;Cho, Kang-Rae
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.819-824
    • /
    • 2000
  • The flow inside an axial turbomachinery must be unsteady. Rotor-stator interaction by two blade rows influences performance, the generation of noise and vibration. So, it will be necessary to study the rotor-stator interaction for the design of an axial fan in which the axial gap between two blade rows is small. In this study, rotor-stator interaction is investigated by experimental methods. The research fan has one stage which consists of 24 rotor blades and 22 stator blades. Three-dimensional velocities measured using $45^{\circ}$ slanted hot wire probe and total pressure is measured using Kiel total pressure probe between rotor and stator with the axial 25%, 55%, 145% of chord length,. This study describes the influence of rotor-stator gap on the flow pattern, performance and loss. The efficiency curve show that the change of the rotor-stator gap make difference in the efficiency. And, the 3-dimensional velocity distribution show that the potential interaction between the rotor and the stator have a great effect on the flow field downstream of rotor, where there are wake flow. various vortices in hub region and leakage vortex in casing region etc.

  • PDF

Performance Characteristics of In-Line Duct Fan Having Mixed Flow Impellers (혼류임펠러를 갖는 관류형팬의 성능특성)

  • Park, Jin-Wook;Lee, Chul-Hyung;Park, Wan-Soon;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.79-85
    • /
    • 2007
  • The performance of in-line duct fan depends on the design parameters of impeller and guide vane such as sweep back angle of impeller hub, guide vane angle etc. In this study four kinds of impellers having different sweep back angles, $0^{\circ}$, $17.5^{\circ}$, $35^{\circ}$, $52.5^{\circ}$ with 8 guide vanes, and different guide vane angles, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ were selected and their performance measured to investigate the effects of design parameters. The results show that both sweep back angle of impeller hub and the guide vane angle have large effect on the efficiency. Especially, it was found that the mixed flow impellers having sweep back angle between $17.5^{\circ}$ and $35^{\circ}$ gave good performances for in-line duct fan.

A Study on Efficiency Improvement of Vane Damper of Marine Boiler FD FAN (중대형 보일러용 FD FAN의 베인 댐퍼 구조 개선에 관한 연구)

  • Kang, Bong-Sung;Park, Yool-Min;Kim, Sung-Moon;Jung, Soon-Jae;Yoo, Min-Gyung;Jang, Sung-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.375-380
    • /
    • 2008
  • This study have processed the developing of vane damper with accurate control by using gear which is a flow-control equipment of marine boiler's FD fan on this research. For the developing of vane damper, we have corrected some problem from welding & assembly process by changing the design, and for the case of an emergency case, we have applied the easy disassembly & assembly on that vane damper. Compared to Rink type vane damper in current, we have focused on high efficiency with low price of that new developing damper. For selection of actuator, we have tried to find the propriety with our developing focus. Also, we have developed a jig of assembly processing for high productivity with quality, it caused the best assembly performance with heat-treated & processed parts.

  • PDF

Multi-Objective Shape Optimization of an Axial Fan Blade

  • Samad, Abdus;Lee, Ki-Sang;Kim, Kwang-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm(NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis is presented in this work. Reynolds-averaged Navier-Stokes(RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

A Study on the Performance of Heat Recovery Ventilators for Apartment Houses (공동주택용 폐열회수형 환기장치의 성능에 관한 측정 연구)

  • Chang, Hyun-Jae;Hong, Seok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • Heat recovery ventilator(HRV) is recommended to improve indoor air quarlity (IAQ) and energy conservation in apartment houses. Recently, in Korea, HRV is produced from many manufacturers. However, there have been not so many experiences to apply HRV in apartment houses and verification on the performance such as heat exchange efficiency, carry-over rate, internal leakage, etc. have not been carried out sufficiently. So in this study, fan performance, heat exchange efficiency, air leakage, internal exhaust leakage, external leakage and sound level of HRV were examined for selected HRV models under domestic and international standard. Results of performance test, there were need to improve latent heat exchange efficiency and sound level of HRV.