• Title/Summary/Keyword: Family dysfunction

Search Result 102, Processing Time 0.027 seconds

Single-Channel Recording of TASK-3-like $K^+$ Channel and Up-Regulation of TASK-3 mRNA Expression after Spinal Cord Injury in Rat Dorsal Root Ganglion Neurons

  • Jang, In-Seok;La, Jun-Ho;Kim, Gyu-Tae;Lee, Jeong-Soon;Kim, Eun-Jin;Lee, Eun-Shin;Kim, Su-Jeong;Seo, Jeong-Min;Ahn, Sang-Ho;Park, Jae-Yong;Hong, Seong-Geun;Kang, Da-Won;Han, Jae-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.245-251
    • /
    • 2008
  • Single-channel recordings of TASK-1 and TASK-3, members of two-pore domain $K^+$ channel family, have not yet been reported in dorsal root ganglion (DRG) neurons, even though their mRNA and activity in whole-cell currents have been detected in these neurons. Here, we report single-channel kinetics of the TASK-3-like $K^+$ channel in DRG neurons and up-regulation of TASK-3 mRNA expression in tissues isolated from animals with spinal cord injury (SCI). In DRG neurons, the single-channel conductance of TASK-3-like $K^+$ channel was $33.0{\pm}0.1$ pS at - 60 mV, and TASK-3 activity fell by $65{\pm}5%$ when the extracellular pH was changed from 7.3 to 6.3, indicating that the DRG $K^+$ channel is similar to cloned TASK-3 channel. TASK-3 mRNA and protein levels in brain, spinal cord, and DRG were significantly higher in injured animals than in sham-operated ones. These results indicate that TASK-3 channels are expressed and functional in DRG neurons and the expression level is up-regulated following SCI, and suggest that TASK-3 channel could act as a potential background $K^+$ channel under SCI-induced acidic condition.

A Comparison Between Mothers' Stress from Child Rearing and Parental Role according to the Type of Dysfunctional Family and Normal Family (해체가정과 일반 가정 어머니의 양육스트레스 및 부모역할 차이)

  • Park, Joung-Ok
    • Journal of the Korean Home Economics Association
    • /
    • v.45 no.7
    • /
    • pp.61-70
    • /
    • 2007
  • The recent type of dysfunctional family is caused not only by the loss of a family member, which is the traditional type of dysfunction, but also by the absence of a functional aspect. In order for a family to function healthily, it is necessary to have the right child rearing by the parents and the right parental role. Accordingly, this study is to identify the difference in stress from child rearing and the parental role in dysfunctional families, which have been increasing enormously in recent times. With this aim, 45 persons from dysfunctional families owing to divorce, 51 persons from other dysfunctional families, and 48 persons from general families were subject to a test about stress from child rearing and the parental role. As a result, for stress from child rearing, mothers in dysfunctional families perceived stress from child rearing more highly than ones in general families; and also for parental role, the level of parental role was proven lower for mothers in dysfunctional families than ones in general families.

Cupping Therapy Combined with Rehabilitation for the Treatment of Radial Palsy: a Case Report

  • Benli, Ali Ramazan;Senay, Demir Yazici;Koroglu, Mustafa;Mutlu, Tansel;Erturhan, Selman;Ogun, Muhammet Nur;Sunay, Didem
    • Journal of Acupuncture Research
    • /
    • v.35 no.1
    • /
    • pp.1-3
    • /
    • 2018
  • This case report demonstrates the beneficial effects of cupping therapy (CT) in a 35-year-old man who is diagnosed with a fracture of the radial shaft due to a motorcycle accident. One year after the treatment started, pseudoarthrosis developed in the radius and an autogenous iliac bone graft was performed. However, extension dysfunction in the wrist became evident. After another 6 months of physical therapy and rehabilitation, no improvements were observed. Therefore, CT and adjunctive electrostimulation were performed, after 30 days of treatment, marked recovery of muscle function and full wrist extension were observed, as determined by electromyography and a grade 5/5 on the Medical Research Council power of wrist extension scale. The results in this case study suggest that CT in conjunction with adjunctive electrostimulation, may accelerate functional recovery from postoperative radial palsy, and provide a useful alternative treatment in this situation.

A Conclusive Review on Amyloid Beta Peptide Induced Cerebrovascular Degeneration and the Mechanism in Mitochondria

  • Merlin, Jayalal L.P.
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.125-137
    • /
    • 2013
  • Promising evidence suggests that amyloid beta peptide ($A{\beta}$), a key mediator in age-dependent neuronal and cerebrovascular degeneration, activates death signalling processes leading to neuronal as well as non-neuronal cell death in the central nervous system. A major cellular event in $A{\beta}$-induced apoptosis of non-neuronal cells, including cerebral endothelial cells, astrocytes and oligodendrocytes, is mitochondrial dysfunction. The apoptosis signalling cascade upstream of mitochondria entails $A{\beta}$ activation of neutral sphingomyelinase, resulting in the release of ceramide from membrane sphingomyelin. Ceramide then activates protein phosphatase 2A (PP2A), a member in the ceramide-activated protein phosphatase (CAPP) family. PP2A dephosphorylation of Akt and FKHRL1 plays a pivotal role in $A{\beta}$-induced Bad translocation to mitochondria and transactivation of Bim. Bad and Bim are pro-apoptotic proteins that cause mitochondrial dysfunction characterized by excessive ROS formation, mitochondrial DNA (mtDNA) damage, and release of mitochondrial apoptotic proteins including cytochrome c, apoptosis inducing factor (AIF), endonuclease G and Smac. The cellular events activated by $A{\beta}$ to induce death of non-neuronal cells are complex. Understanding these apoptosis signalling processes will aid in the development of more effective strategies to slow down age-dependent cerebrovascular degeneration caused by progressive cerebrovascular $A{\beta}$ deposition.

Long-term clinical course of a patient with mucopolysaccharidosis type IIIB

  • Kim, Ja Hye;Chi, Yang Hyun;Kim, Gu-Hwan;Yoo, Han-Wook;Lee, Jun Hwa
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.37-40
    • /
    • 2016
  • Mucopolysaccharidosis type III (MPS III) is a rare genetic disorder caused by lysosomal storage of heparan sulfate. MPS IIIB results from a deficiency in the enzyme alpha-N-acetyl-D-glucosaminidase (NAGLU). Affected patients begin showing behavioral changes, progressive profound mental retardation, and severe disability from the age of 2 to 6 years. We report a patient with MPS IIIB with a long-term follow-up duration. He showed normal development until 3 years. Subsequently, he presented behavioral changes, sleep disturbance, and progressive motor dysfunction. He had been hospitalized owing to recurrent pneumonia and epilepsy with severe cognitive dysfunction. The patient had compound heterozygous c.1444C>T (p.R482W) and c.1675G>T (p.D559Y) variants of NAGLU. Considering that individuals with MPS IIIB have less prominent facial features and skeletal changes, evaluation of long-term clinical course is important for diagnosis. Although no effective therapies for MPS IIIB have been developed yet, early and accurate diagnosis can provide important information for family planning in families at risk of the disorder.

The Effect of the Combined Stretching and Strengthening Exercise on the Clinical Symptoms in Posterior Tibial Tendon Dysfunction Patient (후방 경골 건 기능부전 환자의 임상 증상에 운동 치료가 미치는 영향)

  • Jeong, Tae-Ho;Oh, Jae-Kun;Lee, Hong-Jae;Yang, Yoon-Joon;Nha, Kyung-Wook;Suh, Jin-Soo
    • Journal of Korean Foot and Ankle Society
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 2008
  • Purpose: The isolated exercise therapy and its effect for the treatment of posterior tibial tendon dysfunction (PTTD) is not well known. The purpose of this study was to identify the clinical effect of stretching and strengthening exercise program on the patients' muscle function and range of motion, pain and gait in the management of the early stage PTTD. Materials and Methods: From October 2006 to March 2007, 14 patients with early stage PTTD (stage I or IIa) without surgical intervention were randomly assigned into two groups and we analyzed their clinical results. All patients were female and one who have sprained the same ankle during the program and one who withdrew from the program due to her private reason were excluded. At the last, the exercise group (EG) was seven and the control group (CG) was five. Mann-Whitney U test was used for the comparison of pain, ROM, muscle power, AOFAS score and 5 minute walking test of both groups. Wilcoxon-signed rank test was used for the comparison between the pre and post exercise program in EG. Results: The pain was significantly reduced in EG compare to CG and only the dorsiflexion was significantly increased in EG in the analysis of ROM. The dorsi flexion and plantar flexion power were significantly increased in EG. Conclusion: Our 6 weeks stretching and strengthening exercise program showed noticeably improved clinical result, and therefore it is recommended as one of the useful treatment option in the management of early stage PTTD.

  • PDF

Proteomic Analysis of O-GlcNAc Modifications Derived from Streptozotocin and Glucosamine Induced β-cell Apoptosis

  • Park, Jung-Eun;Kwon, Hye-Jin;Kang, Yup;Kim, Young-Soo
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1058-1068
    • /
    • 2007
  • The post-translational modifications of Ser and Thr residues by O-linked $\beta$-N-acetylglucosamine (O-GlcNAc), i.e., O-GlcNAcylation, is considered a key means of regulating signaling, in a manner analogous to protein phosphorylation. Furthermore, it has been suggested that the increased flux of glucose through the hexosamine biosynthetic pathway (HBP) stimulates O-GlcNAcylation, and that this may be responsible for many of the manifestations of type 2 diabetes mellitus. To determine whether excessive O-GlcNAcylation of target proteins results in pancreatic $\beta$ cell dysfunction, we increased nucleocytoplasmic protein O-GlcNAcylation levels in $\beta$ cells by exposing them to streptozotocin and/or glucosamine. Streptozotocin and glucosamine co-treatment increased O-GlcNAcylated proteomic patterns as assessed by immunoblotting, and these increases in nuclear and cytoplasmic protein O-GlcNAcylations were accompanied by impaired insulin secretion and enhanced apoptosis in pancreatic $\beta$ cells. This observed $\beta$cell dysfunction prompted us to examine Akt and Bcl-2 family member proteins to determine which proteins are O-GlcNAcylated under conditions of high HBP throughput, and how these proteins are associated with $\beta$ cell apoptosis. Eventually, we identified ten new O-GlcNAcylated proteins that were expressed during $\beta$ cell apoptosis, and analyzed the functional implications of these proteins in relation to pancreatic $\beta$ cell dysfunction.

VHL Gene Mutation Analysis of a Chinese Family with Non-Syndromic Pheochromocytomas and Patients with Apparently Sporadic Pheochromocytoma

  • Zhang, Bin;Qian, Jing;Chang, De-Hui;Wang, Yang-Min;Zhou, Da-Hai;Qiao, Gou-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1977-1980
    • /
    • 2015
  • Objective: The Von Hippel-Lindau syndrome (VHLD), an inherited neoplastic syndrome predisposing to central nervous system hemangioblastoma (CNS), pheochromocytoma (PCC), renal cell carcinoma(RCC), retinal hemangioma (RA) and renal cysts, is caused by mutations or deletions of the VHL tumor-suppressor gene. To assess VHL genotype-phenotype correlations with function of pVHL a gene mutation analysis of members in a Chinese family with non-syndromic PCCs and individuals with apparently sporadic pheochromocytoma (ASP) was performed. Materials and Methods: DNA samples of 20 members from the Chinese family with non-syndromic PCCs and 41 patients with ASP were analyzed by polymerase chain reaction and direct sequencing, confirmed by Taqman probe. Results: Three novel mutations (H125P, 623(^TTTGTtG) and R120T) were identified in the Chinese family and in 3 among 41 ASP patients. The mutations were all located in exon 2 of VHL gene encoding ${\beta}$-domain of pVHL. The tumor type in H125P carriers and R120T carriers was VHL type 2C. And 623(^TTTGTtG) carriers presented VHL type 2B or type 2C. Conclusions: VHL gene abnormalities were identified in the Chinese family with non-syndromic PCCs and patients with APS, resulting in dysfunction of pVHL. H125P and R120T could be associated with VHL type 2C, while 623(^TTTGTtG) might be linked with VHL type 2B or type 2C. Not only is the genetic analysis helpful for early diagnosis and treatment of patients with VHLD, it is also benefitial for research intoVHLD pathogenesis.

The Expression of Solute carrier family members Genes in Mouse Ovarian Developments (생쥐의 난소 발달과정에서 Solute carrier family 유전자들의 발현양상)

  • O, Lee-Gyun;Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • Granulosa cells, which surround the oocyte within the ovarian follicle, play an essential role in creating conditions required for the development of oocytes and follicles. The solute carrier family (SLC) is comprised of influx transporters of steroidal hormones, various drugs, and several other substrates. The differential expression of selected DEGs was confirmed using in situ hybridization analysis. SLC23A3 and SLC39A10 were highly expressed in the ovary. The SLC39A10 gene was expressed in the primordial follicle stage, but SLC23A3 was expressed in the growing follicle stage. Contrastingly, the expression of SLC23A3 was increased in granulosa cells at the growing follicle stage. The differential expressions of SLC23A3 and SLC39A10 between the primordial and primary follicles were additionally confirmed by using follicle isolations. The gene expression profile from the present study may provide insight for future studies on the mechanism(s) involved in primordial-primary follicular transition and suggestions to promote follicular development in ovarian dysfunction.

Physiological, Pharmacological and Toxicological Implications of Heterodimeric Amino Acid Transporters

  • Kanai, Yoshikatsu;Endou, Hitoshi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.3
    • /
    • pp.117-127
    • /
    • 2004
  • The heterodimeric amino acid transporter family is a subfamily of SLC7 solute transporter family which includes 14-transmembrane cationic amino acid transporters and 12-transmembrane heterodimeric amino acid transporters. The members of heterodimeric amino acid transporter family are linked via a disulfide bond to single membrane spanning glycoproteins such as 4F2hc (4F2 heavy chain) and rBAT $(related\;to\;b^0,\;^+-amino\;acid\;transporter)$. Six members are associated with 4F2hc and one is linked to rBAT. Two additional members were identified as ones associated with unknown heavy chains. The members of heterodimeric amino acid transporter family exhibit diverse substrate selectivity and are expressed in variety of tissues. They play variety of physiological roles including epithelial transport of amino acids as well as the roles to provide cells in general with amino acids for cellular nutrition. The dysfunction or hyperfunction of the members of the heterodimeric amino acid transporter family are involved in some diseases and pathologic conditions. The genetic defects of the renal and intestinal transporters $b^{0,+}AT/BAT1\;(b^{0,+}-type\;amino\;acid\;transporter/b^{0,+}-type\;amino\;acid\;transporter\;1)$ and $y^+LAT1\;(y^+L-type\;amino\;acid\;transporter\;1)$ result in the amino aciduria with sever clinical symptoms such as cystinuria and lysin uric protein intolerance, respectively. LAT1 is proposed to be involved in the progression of malignant tumor. xCT (x-C-type transporter) functions to protect cells against oxidative stress, while its over-function may be damaging neurons leading to the exacerbation of brain damage after brain ischemia. Because of broad substrate selectivity, system L transporters such as LAT1 transport amino acid-related compounds including L-Dopa and function as a drug transporter. System L also interacts with some environmental toxins with amino acid-related structure such as cysteine-conjugated methylmercury. Therefore, these transporter would be candidates for drug targets based on new therapeutic strategies.