• Title/Summary/Keyword: False Sharing

Search Result 25, Processing Time 0.027 seconds

The Design of Authentication Model based on Symmetric Key Encryption for Improving Network Availability in Cloud Environment (클라우드 환경에서 네트워크 가용성 개선을 위한 대칭키 암호화 기반 인증 모델 설계)

  • Baek, Yong-Jin;Hong, Suk-Won;Kim, Sang-Bok
    • Convergence Security Journal
    • /
    • v.19 no.5
    • /
    • pp.47-53
    • /
    • 2019
  • Network-based sharing of information has evolved into a cloud service environment today, increasing its number of users rapidly, but has become a major target for network-based illegal attackers.. In addition, IP spoofing among attackers' various attack techniques generally involves resource exhaustion attacks. Therefore, fast detection and response techniques are required. The existing detection method for IP spoofing attack performs the final authentication process according to the analysis and matching of traceback information of the client who attempted the connection request. However, the simple comparison method of traceback information may require excessive OTP due to frequent false positives in an environment requiring service transparency. In this paper, symmetric key cryptography based on traceback information is used as mutual authentication information to improve this problem. That is, after generating a traceback-based encryption key, mutual authentication is possible by performing a normal decryption process. In addition, this process could improve the overhead caused by false positives.

GRID BASED ENERGY EFFICIENT AND SECURED DATA TRANSACTION FOR CLOUD ASSISTED WSN-IOT

  • L. SASIREGA;C. SHANTHI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.95-105
    • /
    • 2023
  • To make the network energy efficient and to protect the network from malignant user's energy efficient grid based secret key sharing scheme is proposed. The cost function is evaluated to select the optimal nodes for carrying out the data transaction process. The network is split into equal number of grids and each grid is placed with certain number of nodes. The node cost function is estimated for all the nodes present in the network. Once the optimal energy proficient nodes are selected then the data transaction process is carried out in a secured way using malicious nodes filtration process. Therefore, the message is transmitted in a secret sharing method to the end user and this process makes the network more efficient. The proposed work is evaluated in network simulated and the performance of the work are analysed in terms of energy, delay, packet delivery ratio, and false detection ratio. From the result, we observed that the work outperforms the other works and achieves better energy and reduced packet rate.

Distributed Shared Memory Scheme for Multi-thread programming (다중쓰레드 프로그래밍을 위한 분산공유메모리 관리 기법)

  • Seo, Dae-Wha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.791-802
    • /
    • 1996
  • In this paper, we discuss a distributed shared memory management scheme based on multi-threaded programming model for a large-scale loosely coupled multiprocessor system. The scheme covers three major issues in the distribued shared memory;the address translation table management, the block coherence maintenance, and the block placement policy. The scheme efficiently resolves the general problems occurred in the distributed shared memory such as a false sharing, an unnecessary replication, a block bouncing, and an address aliasing phenomenon. It also provides the application transparency, good scalability, easy implementation, and multithreaded programming model to users.

  • PDF

Analysis and Design of the Efficient Consolidated Transportation System Model (효율적인 공동 수.배송 시스템 모델의 분석 및 설계)

  • Lee, Myeong-Ho
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A new logistics concept is needed through the sharing information between suppliers and consumers, which maximizes the customers service and its flexibility by changing functional- oriented to process-oriented. As in many other industries, communication and data manipulation technology have led to systematical change to the logistics industry. One of the biggest changes of the industry that lies ahead is Consolidated Transportation. To improve this systematically false logistical environment, developing an integrated logistics information system with consolidated transportation, framework, standardization, and data integration is essential. However, no party outstands as the leading party for nationwide improvement of logistics, nor does the right analysis and design for it. Therefore, successful nationwide logistics model is yet to exist. This paper provides individual parties, which consider efficient consolidated transportation as their business models, with instructions for logistics information system so that they could be competitive in the market. It also helps companies collect user requirements for efficient consolidated transportation, and utilize it for its development. Finally, this paper extracts the design of algorithm for the efficient consolidated transportation.

Design and Implementation of Efficient Memory Allocator using Contiguous Allocation Scheme (연속할당 기법을 이용한 효과적인 lock-free 메모리 할당자 설계 및 구현)

  • Kim, In-Hyuk;Kim, Tae-Hyoung;Eom, Young-Ik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.559-561
    • /
    • 2011
  • 멀티코어 환경에서는 공유 데이터에 대한 동기화로 인한 병목 현상이 중요한 문제점 중의 하나이다. 그리고 동적 메모리 할당자는 대량의 메모리를 할당 및 해제하는 프로그램에서 공유 데이터에 대한 동기화 문제로 성능 저하를 유발시키고 있다. 이를 해결하기 위해 다양한 lock-free 메모리 할당 기법들이 소개되었지만 false sharing과 heap blow-up과 같은 여러 가지 문제점들을 가지고 있다. 이에 본 논문에서는 새로운 연속할당 기법을 제안하고, 이를 이용하여 동일 블록 내의 오브젝트 할당/해제에 따른 동기화 문제를 해결함으로써 효과적인 lock-free 메모리 할당 기법을 제안하였다. 그리고 제안 기법을 구현하여 기존의 메모리 할당 기법들과 실험을 통하여 검증하였으며, 대량의 메모리를 사용하는 멀티 스레드 환경에서 특히 좋은 성능을 보이는 것을 확인하였다.

Parallel Processing of k-Means Clustering Algorithm for Unsupervised Classification of Large Satellite Images: A Hybrid Method Using Multicores and a PC-Cluster (대용량 위성영상의 무감독 분류를 위한 k-Means Clustering 알고리즘의 병렬처리: 다중코어와 PC-Cluster를 이용한 Hybrid 방식)

  • Han, Soohee;Song, Jeong Heon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.445-452
    • /
    • 2019
  • In this study, parallel processing codes of k-means clustering algorithm were developed and implemented in a PC-cluster for unsupervised classification of large satellite images. We implemented intra-node code using multicores of CPU (Central Processing Unit) based on OpenMP (Open Multi-Processing), inter-nodes code using a PC-cluster based on message passing interface, and hybrid code using both. The PC-cluster consists of one master node and eight slave nodes, and each node is equipped with eight multicores. Two operating systems, Microsoft Windows and Canonical Ubuntu, were installed in the PC-cluster in turn and tested to compare parallel processing performance. Two multispectral satellite images were tested, which are a medium-capacity LANDSAT 8 OLI (Operational Land Imager) image and a high-capacity Sentinel 2A image. To evaluate the performance of parallel processing, speedup and efficiency were measured. Overall, the speedup was over N / 2 and the efficiency was over 0.5. From the comparison of the two operating systems, the Ubuntu system showed two to three times faster performance. To confirm that the results of the sequential and parallel processing coincide with the other, the center value of each band and the number of classified pixels were compared, and result images were examined by pixel to pixel comparison. It was found that care should be taken to avoid false sharing of OpenMP in intra-node implementation. To process large satellite images in a PC-cluster, code and hardware should be designed to reduce performance degradation caused by file I / O. Also, it was found that performance can differ depending on the operating system installed in a PC-cluster.

Parallel Processing of K-means Clustering Algorithm for Unsupervised Classification of Large Satellite Imagery (대용량 위성영상의 무감독 분류를 위한 K-means 군집화 알고리즘의 병렬처리)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • The present study introduces a method to parallelize k-means clustering algorithm for fast unsupervised classification of large satellite imagery. Known as a representative algorithm for unsupervised classification, k-means clustering is usually applied to a preprocessing step before supervised classification, but can show the evident advantages of parallel processing due to its high computational intensity and less human intervention. Parallel processing codes are developed by using multi-threading based on OpenMP. In experiments, a PC of 8 multi-core integrated CPU is involved. A 7 band and 30m resolution image from LANDSAT 8 OLI and a 8 band and 10m resolution image from Sentinel-2A are tested. Parallel processing has shown 6 time faster speed than sequential processing when using 10 classes. To check the consistency of parallel and sequential processing, centers, numbers of classified pixels of classes, classified images are mutually compared, resulting in the same results. The present study is meaningful because it has proved that performance of large satellite processing can be significantly improved by using parallel processing. And it is also revealed that it easy to implement parallel processing by using multi-threading based on OpenMP but it should be carefully designed to control the occurrence of false sharing.

PowerShell-based Malware Detection Method Using Command Execution Monitoring and Deep Learning (명령 실행 모니터링과 딥 러닝을 이용한 파워셸 기반 악성코드 탐지 방법)

  • Lee, Seung-Hyeon;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1197-1207
    • /
    • 2018
  • PowerShell is command line shell and scripting language, built on the .NET framework, and it has several advantages as an attack tool, including built-in support for Windows, easy code concealment and persistence, and various pen-test frameworks. Accordingly, malwares using PowerShell are increasing rapidly, however, there is a limit to cope with the conventional malware detection technique. In this paper, we propose an improved monitoring method to observe commands executed in the PowerShell and a deep learning based malware classification model that extract features from commands using Convolutional Neural Network(CNN) and send them to Recurrent Neural Network(RNN) according to the order of execution. As a result of testing the proposed model with 5-fold cross validation using 1,916 PowerShell-based malwares collected at malware sharing site and 38,148 benign scripts disclosed by an obfuscation detection study, it shows that the model effectively detects malwares with about 97% True Positive Rate(TPR) and 1% False Positive Rate(FPR).

Energy Detection Based Sensing for Secure Cognitive Spectrum Sharing in the Presence of Primary User Emulation Attack

  • Salem, Fatty M.;Ibrahim, Maged H.;Ibrahim, I.I.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.6
    • /
    • pp.357-366
    • /
    • 2013
  • Spectrum sensing, as a fundamental functionality of Cognitive Radio (CR), enables Secondary Users (SUs) to monitor the spectrum and detect spectrum holes that could be used. Recently, the security issues of Cognitive Radio Networks (CRNs) have attracted increasing research attention. As one of the attacks against CRNs, a Primary User Emulation (PUE) attack compromises the spectrum sensing of CR, where an attacker monopolizes the spectrum holes by impersonating the Primary User (PU) to prevent SUs from accessing the idle frequency bands. Energy detection is often used to sense the spectrum in CRNs, but the presence of PUE attack has not been considered. This study examined the effect of PUE attack on the performance of energy detection-based spectrum sensing technique. In the proposed protocol, the stationary helper nodes (HNs) are deployed in multiple stages and distributed over the coverage area of the PUs to deliver spectrum status information to the next stage of HNs and to SUs. On the other hand, the first stage of HNs is also responsible for inferring the existence of the PU based on the energy detection technique. In addition, this system provides the detection threshold under the constraints imposed on the probabilities of a miss detection and false alarm.

  • PDF

Reducing False Alarms in Schizophrenic Parallel Synchronizer Detection for Esterel (Esterel에서 동기장치 중복사용 문제 검출시 과잉 경보 줄이기)

  • Yun, Jeong-Han;Kim, Chul-Joo;Kim, Seong-Gun;Han, Tai-Sook
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.8
    • /
    • pp.647-652
    • /
    • 2010
  • Esterel is an imperative synchronous language well-adapted to control-intensive systems. When an Esterel program is translated to a circuit, the synchronizer of a parallel statement may be executed more than once in a clock; the synchronizer is called schizophrenic. Existing compilers cure the problems of schizophrenic parallel synchronizers using logic duplications. This paper proposes the conditions under which a synchronizer causes no problem in circuits when it is executed more than once in a clock. In addition we design a detection algorithm based on those conditions. Our algorithm detects schizophrenic parallel synchronizers that have to be duplicated in Esterel source codes so that compilers can save the size of synthesized circuits