• Title/Summary/Keyword: False Sharing

Search Result 25, Processing Time 0.019 seconds

Object-Size and Call-Site Tracing based Shared Memory Allocator for False Sharing Reduction in DSM Systems (분산 공유 메모리 시스템에서 거짓 공유를 줄이는 객체-크기 및 호출지-추적 기반 공유 메모리 할당 기법)

  • Lee, Jong-Woo;Park, Young-Ho;Yoon, Yong-Ik
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.77-86
    • /
    • 2008
  • False sharing is a result of co-location of unrelated data in the same unit of memory coherency, and is one source of unnecessary overhead being of no help to keep the memory coherency in multiprocessor systems. Moreover, the damage caused by false sharing becomes large in proportion to the granularity of memory coherency. To reduce false sharing in page-based DSM systems, it is necessary to allocate unrelated data objects that have different access patterns into the separate shared pages. In this paper we propose sized and call-site tracing-based shared memory allocator, shortly SCSTallocator. SCSTallocator places each data object requested from the different call-sites into the separate shared pages, and at the same time places each data object that has different size into different shared pages. Consequently data objects that have the different call-site and different object size prohibited from being allocated to the same shared page. Our observations show that our SCSTallocator outperforms the existing dynamic shared memory allocators. By combining the two existing allocation technique, we can reduce a considerable amount of false sharing misses.

  • PDF

Reducing False Sharing based on Memory Reference Patterns in Distributed Shared Memory Systems (분산 공유 메모리 시스템에서 메모리 참조 패턴에 근거한 거짓 공유 감속 기법)

  • Jo, Seong-Je
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1082-1091
    • /
    • 2000
  • In Distributed Shared Memory systems, false sharing occurs when two different data items, not shared but accessed by two different processors, are allocated to a single block and is an important factor in degrading system performance. The paper first analyzes shared memory allocation and reference patterns in parallel applications that allocate memory for shared data objects using a dynamic memory allocator. The shared objects are sequentially allocated and generally show different reference patterns. If the objects with the same size are requested successively as many times as the number of processors, each object is referenced by only a particular processor. If the objects with the same size are requested successively much more than the number of processors, two or more successive objects are referenced by only particular processors. On the basis of these analyses, we propose a memory allocation scheme which allocates each object requested by different processors to different pages and evaluate the existing memory allocation techniques for reducing false sharing faults. Our allocation scheme reduces a considerable amount of false sharing faults for some applications with a little additional memory space.

  • PDF

Memory Allocation Scheme for Reducing False Sharing on Multiprocessor Systems (다중처리기 시스템에서 거짓 공유 완화를 위한 메모리 할당 기법)

  • Han, Boo-Hyung;Cho, Seong-Je
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.4
    • /
    • pp.383-393
    • /
    • 2000
  • In shared memory multiprocessor systems, false sharing occurs when several independent data objects, not shared but accessed by different processors, are allocated to the same coherency unit of memory. False sharing is one of the major factors that may degrade the performance of memory coherency protocols. This paper presents a new shared memory allocation scheme to reduce false sharing of parallel applications where master processor controls allocation of all the shared objects. Our scheme allocates the objects to temporary address space for the moment, and actually places each object in the address space of processor that first accesses the object later. Its goal is to allocate independent objects that may have different access patterns to different pages. We use execution-driven simulation of real parallel applications to evaluate the effectiveness of our scheme. Experimental results show that by using our scheme a considerable amount of false sharing faults can be reduced with low overhead.

  • PDF

Call-Site Tracing-based Shared Memory Allocator for False Sharing Reduction in DSM Systems (분산 공유 메모리 시스템에서 거짓 공유를 줄이는 호출지 추적 기반 공유 메모리 할당 기법)

  • Lee, Jong-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.7
    • /
    • pp.349-358
    • /
    • 2005
  • False sharing is a result of co-location of unrelated data in the same unit of memory coherency, and is one source of unnecessary overhead being of no help to keep the memory coherency in multiprocessor systems. Moreover. the damage caused by false sharing becomes large in proportion to the granularity of memory coherency. To reduce false sharing in a page-based DSM system, it is necessary to allocate unrelated data objects that have different access patterns into the separate shared pages. In this paper we propose call-site tracing-based shared memory allocator. shortly CSTallocator. CSTallocator expects that the data objects requested from the different call-sites may have different access patterns in the future. So CSTailocator places each data object requested from the different call-sites into the separate shared pages, and consequently data objects that have the same call-site are likely to get together into the same shared pages. We use execution-driven simulation of real parallel applications to evaluate the effectiveness of our CSTallocator. Our observations show that by using CSTallocator a considerable amount of false sharing misses can be additionally reduced in comparison with the existing techniques.

Robust spectrum sensing under noise uncertainty for spectrum sharing

  • Kim, Chang-Joo;Jin, Eun Sook;Cheon, Kyung-yul;Kim, Seon-Hwan
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.176-183
    • /
    • 2019
  • Spectrum sensing plays an important role in spectrum sharing. Energy detection is generally used because it does not require a priori knowledge of primary user (PU) signals; however, it is sensitive to noise uncertainty. An order statistics (OS) detector provides inherent protection against nonhomogeneous background signals. However, no analysis has been conducted yet to apply OS detection to spectrum sensing in a wireless channel to solve noise uncertainty. In this paper, we propose a robust spectrum sensing scheme based on generalized order statistics (GOS) and analyze the exact false alarm and detection probabilities under noise uncertainty. From the equation of the exact false alarm probability, the threshold value is calculated to maintain a constant false alarm rate. The detection probability is obtained from the calculated threshold under noise uncertainty. As a fusion rule for cooperative spectrum sensing, we adopt an OR rule, that is, a 1-out-of-N rule, and we call the proposed scheme GOS-OR. The analytical results show that the GOS-OR scheme can achieve optimum performance and maintain the desired false alarm rates if the coefficients of the GOS-OR detector can be correctly selected.

Performance Analysis of Cooperative Spectrum Sensing Based on Sharing Threshold among cooperative users (협력 노드의 합리적 임계치 공유를 통한 센싱 검출 성능 분석)

  • Seo, SungIl;Lee, MiSun;Kim, Jinyoung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.66-70
    • /
    • 2013
  • In this paper, Threshold setting method is proposed to improve detection probability for cooperative sensing. Even if cooperative users have all same false alarm rate, each user has different threshold due to pass ad-hoc channel. threshold level is related to detection probability. So, we select the highest threshold among cooperative users and then share threshold information for getting the high detection probability.

Spectrum Sensing Techniques for Cognitive radio-A Review

  • Matin, Mohammad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3638-3654
    • /
    • 2014
  • Cognitive Radio (CR) users need to sense the environment or channel at regular time interval for sharing the spectrum band of the primary users (PUs). Once find the spectrum idle, CR users start their transmission through it. Even while transmitting, they need to continue the sensing process so that they can leave the spectrum immediately whenever find a PU wanting to use the band. Therefore, detecting PUs is one of the main functions of cognitive radio before transmission and higher the detection probability ensures better protection to the primary users. However, it is not possible to attain a high detection probability (or a low miss detection probability) and low false alarm probability simultaneously as there is a tradeoff between false alarm probability ($P_{fa}$) and the probability of detection ($P_d$). In this paper, the author has provided a comprehensive study on different sensing techniques and discussed their advantages and disadvantages. Moreover, it is expected that, with this article, readers can have a through understanding of sensing techniques in CR and the current research trends in this area.

A Reputation Management Scheme Improving the Trustworthiness of Multi-peers and Shared Resources in P2P Networks (다중 피어 및 공유 자원의 신뢰성 향상을 위한 P2P 네트워크의 평판 관리)

  • Shin, Jung-Hwa;Kim, Tae-Hoon;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1409-1419
    • /
    • 2008
  • Inauthentic resources can be easily spread by P2P (Peer-to-Peer) participants due to the openness and anonymity of P2P networks. A possible way to restrict the distribution of inauthentic resources and prevent malicious peers from joining P2P networks is to exploit peers' reputation which reflect their past behaviors and are also helpful to predict peers' future behaviors. There is a possibility that some peers intentionally plays along with other peers in order to increase/decrease its reputation through false feedback exchanges. Therefore, we propose a new reputation management scheme, called TrustRRep (Trustable Resource sharing service using Reputation) scheme, which improves the trustworthiness and efficiency of P2P networks by identifying peers who give false feedback. The TrustRRep scheme is also capable of providing peers with the trustworthiness of shared resources by discriminating resources distributed by malicious peers. We implement the proposed TrustRRep scheme on the NS-2 simulator for evaluating its performance compared to the recent reputation management work available in literature. A case study on simulations shows that the proposed reputation management scheme yields efficient performance in terms of the minimal download ratio and dissemination of inauthentic resources, the efficient identification of peers who give false feedback, and the provisioning of the trustworthiness of peers' reputation. It also shows that the proposed TrustRRep scheme imposes the restrictions of participating P2P networks on a malicious peers by diminishing its trust value.

  • PDF

Transmission Power-Based Spectrum Sensing for Cognitive Ad Hoc Networks

  • Choi, Hyun-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.97-103
    • /
    • 2014
  • In spectrum sensing, there is a tradeoff between the probability of missed detection and the probability of a false alarm according to the value of the sensing threshold. Therefore, it is important to determine the sensing threshold suitable to the environment of cognitive radio networks. In this study, we consider a cognitive radio-based ad hoc network where secondary users directly communicate by using the same frequency band as the primary system and control their transmit power on the basis of the distance between them. First, we investigate a condition in which the primary and the secondary users can share the same frequency band without harmful interference from each other, and then, propose an algorithm that controls the sensing threshold dynamically on the basis of the transmit power of the secondary user. The analysis and simulation results show that the proposed sensing threshold control algorithm has low probabilities of both missed detection and a false alarm and thus, enables optimized spectrum sharing between the primary and the secondary systems.

Design and Implementation of HLRC Protocol for Software Distributed Shared Memory System (소프트웨어 분산공유메모리 시스템을 위한 HLRC 프로토콜의 설계 및 구현)

  • 윤희철;이상권;이준원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.624-626
    • /
    • 2000
  • 통신 오버헤드 및 거짓 공유(false sharing)등의 문제를 해결하기 위하여 소프트웨어 분산공유메모리 시스템을 위한 다양한 메모리 모델등이 제안되었다. HLRC(Home based Lazy Release)[1]는 Keleher에 의해 제안된 LRC[2] 모델에 home 개념을 도입한 모델로서 최근의 소프트웨어 분산공유 메모리 시스템에서 널리 채용되고 있다. 본 논문에서는 HLRC 모델을 기반으로 한 메모리 일관성 프로토콜의 설계, 구현, 그리고 성능 측정 결과에 관하여 기술한다.

  • PDF