Chon Won Yang;Kim Eun Hee;Shin Moon Sun;Ryu Keun Ho
Proceedings of the KSRS Conference
/
2004.10a
/
pp.716-718
/
2004
The false alarm data in intrusion detection systems are divided into false positive and false negative. The false positive makes bad effects on the performance of intrusion detection system. And the false negative makes bad effects on the efficiency of intrusion detection system. Recently, the most of works have been studied the data mining technique for analysis of alert data. However, the false alarm data not only increase data volume but also change patterns of alert data along the time line. Therefore, we need a tool that can analyze patterns that change characteristics when we look for new patterns. In this paper, we focus on the false positives and present a framework for analysis of false alarm pattern from the alert data. In this work, we also apply incremental data mining techniques to analyze patterns of false alarms among alert data that are incremental over the time. Finally, we achieved flexibility by using dynamic support threshold, because the volume of alert data as well as included false alarms increases irregular.
NIDS(Network Intrusion Detection System)은 실시간에 침입을 탐지하는 방안을 제시하는 시스템이지만 침입에 대한 탐지보다 더 많은 false positives 정보를 발생시키고 있다. 많은 false positives로부터 실제 침입을 찾아내는 것은 NIDS를 효율적으로 운영하기 위해서 필요한 새로운 일이 되고 있다. 본 논문은 NIDS에서의 false positive를 줄이기 위한 동적인 중요도 계산 모델을 제시한다. 제안된 방법은 공격의 4가지 특성(공격 의도, 공격자의 지식정도, 공격의 영향 그리고 공격의 성공 가능성)을 이용한다. 만약 공격자가 공격의 의도가 크거나 많은 지식을 가지고 있다면, 보통의 경우보다 공격에 성공할 확률이 높다. 또한 공격의 대상이 특정 공격에 취약하거나 특정 공격이 대상 시스템에 미칠 영향이 큰 경우에는 더욱더 중요한 공격이 된다고 할 수 있다. 이런 4가지의 특성을 이용하여 제시한 본 논문은 결과는 상당히 많은 부분에 대한 false positives를 줄이는 효과를 가지고 왔으며, 또한 공격에 대한 중요도의 정확성을 향상시켜서 NIDS의 관리를 쉽게 할 수 있도록 한다.
To analyze tens of thousands of alarms triggered by the intrusion detections systems (IDS) a day has been very time-consuming, requiring human administrators to stay alert for all time. But most of the alarms triggered by the IDS prove to be the false positives. If alarms could be correctly classified into the false positive and the false negative, then we could alleviate most of the burden of human administrators and manage the IDS far more efficiently. Therefore, we present a new approach based on attribute-oriented induction (AOI) to classify alarms into the false positive and the false negative. The experimental results show the proposed approach performs very well.
Primary screening test for serum HBsAg by RPHA from 4,805 persons who were clinically well through preemployment examination for the period of one calendar year of 1983 revealed 476 (9.9%) positive individual carriers. There were no significant differences in distribution of positives of serum HBsAg by age group, profession, or province area. Among positives of serum HBsAg, 356 (74.8%) showed normal findings and 120 (25.2%) showed abnormal findings in liver function test, respectively. Radioimmunoassay was done in 169 positives of HBsAg and RIA detected 10 negative persons who were positive by RPHA revealing 5.9% of false positive rate and 94.1% of sensitivity of RPHA. In RIA profile of HBV markers, pattern I (HBsAg+, Anti-HBe+) was 46.6%, pattern II (HBsAg+, HBeAg+) was 33.3%, pattern III (HBsAg+only) was 18.3%, pattern IV (HBsAg+, HBeAg+, Anti-HBs+) was 1.3%, pattern V (HBsAg+, HBeAg+, Anti-HBe+) was 0.6%, respectively. There were no positives of HBsAg among 10 persons who were negatives of HBsAg by RIA.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.6
/
pp.1131-1139
/
2020
The static analysis of the source code is to find the remaining security weaknesses for a wide range of source codes. The static analysis tool is used to check the result, and the static analysis expert performs spying and false detection analysis on the result. In this process, the amount of analysis is large and the rate of false positives is high, so a lot of time and effort is required, and a method of efficient analysis is required. In addition, it is rare for experts to analyze only the source code of the line where the defect occurred when performing positive/false detection analysis. Depending on the type of defect, the surrounding source code is analyzed together and the final analysis result is delivered. In order to solve the difficulty of experts discriminating positive and false positives using these static analysis tools, this paper proposes a method of determining whether or not the security weakness found by the static analysis tools is a spy detection through artificial intelligence rather than an expert. In addition, the optimal size was confirmed through an experiment to see how the size of the training data (source code around the defects) used for such machine learning affects the performance. This result is expected to help the static analysis expert's job of classifying positive and false positives after static analysis.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.8
no.4
/
pp.316-321
/
2008
Advanced computer network technology enables computers to be connected in an open network environment. Despite the growing numbers of security threats to networks, most intrusion detection identifies security attacks mainly by detecting misuse using a set of rules based on past hacking patterns. This pattern matching has a high rate of false positives and can not detect new hacking patterns, which makes it vulnerable to previously unidentified attack patterns and variations in attack and increases false negatives. Intrusion detection and analysis technologies are thus required. This paper investigates the asymmetric costs of false errors to enhance the performances the detection systems. The proposed method utilizes the network model to consider the cost ratio of false errors. By comparing false positive errors with false negative errors, this scheme achieved better performance on the view point of both security and system performance objectives. The results of our empirical experiment show that the network model provides high accuracy in detection. In addition, the simulation results show that effectiveness of anomaly traffic detection is enhanced by considering the costs of false errors.
The correspondence problem is known to be difficult to solve because false positives and false negatives almost always exist in real image sequences. In this paper, we propose a robust feature tracking algorithm considering incomplete trajectories such as entering and/or vanishing trajectories. We solve the correspondence problem as the optimal graph search problem, by considering false feature points and by properly reflecting motion characteristics. The proposed algorithm finds a local optimal correspondence so that the effect of false feature points can be minimized in the decision process. The time complexity of the proposed graph search algorithm is given by O(mn) in the best case and O(m$^2$n) in the worst case, where m and n are the number of feature points in two consecutive frames. The proposed algorithm can find trajectories correctly and robustly, which has been shown by experimental results.
The publication of genetic epidemiology meta-analyses has increased rapidly, but it has been suggested that many of the statistically significant results are false positive. In addition, most such meta-analyses have been redundant, duplicate, and erroneous, leading to research waste. In addition, since most claimed candidate gene associations were false-positives, correctly interpreting the published results is important. In this review, we emphasize the importance of interpreting the results of genetic epidemiology meta-analyses using Bayesian statistics and gene network analysis, which could be applied in other diseases.
Network-based sharing of information has evolved into a cloud service environment today, increasing its number of users rapidly, but has become a major target for network-based illegal attackers.. In addition, IP spoofing among attackers' various attack techniques generally involves resource exhaustion attacks. Therefore, fast detection and response techniques are required. The existing detection method for IP spoofing attack performs the final authentication process according to the analysis and matching of traceback information of the client who attempted the connection request. However, the simple comparison method of traceback information may require excessive OTP due to frequent false positives in an environment requiring service transparency. In this paper, symmetric key cryptography based on traceback information is used as mutual authentication information to improve this problem. That is, after generating a traceback-based encryption key, mutual authentication is possible by performing a normal decryption process. In addition, this process could improve the overhead caused by false positives.
Thomas Weikert;Luca Andre Noordtzij;Jens Bremerich;Bram Stieltjes;Victor Parmar;Joshy Cyriac;Gregor Sommer;Alexander Walter Sauter
Korean Journal of Radiology
/
v.21
no.7
/
pp.891-899
/
2020
Objective: To assess the diagnostic performance of a deep learning-based algorithm for automated detection of acute and chronic rib fractures on whole-body trauma CT. Materials and Methods: We retrospectively identified all whole-body trauma CT scans referred from the emergency department of our hospital from January to December 2018 (n = 511). Scans were categorized as positive (n = 159) or negative (n = 352) for rib fractures according to the clinically approved written CT reports, which served as the index test. The bone kernel series (1.5-mm slice thickness) served as an input for a detection prototype algorithm trained to detect both acute and chronic rib fractures based on a deep convolutional neural network. It had previously been trained on an independent sample from eight other institutions (n = 11455). Results: All CTs except one were successfully processed (510/511). The algorithm achieved a sensitivity of 87.4% and specificity of 91.5% on a per-examination level [per CT scan: rib fracture(s): yes/no]. There were 0.16 false-positives per examination (= 81/510). On a per-finding level, there were 587 true-positive findings (sensitivity: 65.7%) and 307 false-negatives. Furthermore, 97 true rib fractures were detected that were not mentioned in the written CT reports. A major factor associated with correct detection was displacement. Conclusion: We found good performance of a deep learning-based prototype algorithm detecting rib fractures on trauma CT on a per-examination level at a low rate of false-positives per case. A potential area for clinical application is its use as a screening tool to avoid false-negative radiology reports.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.