• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.022 seconds

Improved Tweet Bot Detection Using Spatio-Temporal Information (시공간 정보를 사용한 개선된 트윗 봇 검출)

  • Kim, Hyo-Sang;Shin, Won-Yong;Kim, Donggeon;Cho, Jaehee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2885-2891
    • /
    • 2015
  • Twitter, one of online social network services, is one of the most popular micro-blogs, which generates a large number of automated programs, known as tweet bots because of the open structure of Twitter. While these tweet bots are categorized to legitimate bots and malicious bots, it is important to detect tweet bots since malicious bots spread spam and malicious contents to human users. In the conventional work, temporal information was utilized for the classficiation of human and bot. In this paper, by utilizing geo-tagged tweets that provide high-precision location information of users, we first identify both Twitter users' exact location and the corresponding timestamp, and then propose an improved two-stage tweet bot detection algorithm by computing an entropy based on spatio-temporal information. As a main result, the proposed algorithm shows superior bot detection and false alarm probabilities over the conventional result which only uses temporal information.

Small Target Detection Method Using Bilateral Filter Based on Surrounding Statistical Feature (주위 통계 특성에 기초한 양방향 필터를 이용한 소형 표적 검출 기법)

  • Bae, Tae-Wuk;Kim, Young-Taeg
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.756-763
    • /
    • 2013
  • Bilateral filter (BF), functioning by two Gaussian filters, domain and range filter is a nonlinear filter for sharpness enhancement and noise removal. In infrared (IR) small target detection field, the BF is designed by background predictor for predicting background not including small target. For this, the standard deviations of the two Gaussian filters need to be changed adaptively in background and target region of an infrared image. In this paper, the proposed bilateral filter make the standard deviations changed adaptively, using variance feature of mean values of surrounding block neighboring local filter window. And, in case the variance of mean values for surrounding blocks is low for any processed pixel, the pixel is classified to flat background and target region for enhancing background prediction. On the other hand, any pixel with high variance for surrounding blocks is classified to edge region. Small target can be detected by subtracting predicted background from original image. In experimental results, we confirmed that the proposed bilateral filter has superior target detection rate, compared with existing methods.

An Efficient Adaptive Polarization-Space-Time Domain Radar Target Detection Algorithm (3차원 (편파, 공간, 시간) 영역에서의 효율적인 적응 레이다 신호검출 알고리즘)

  • Yang, Yeon-Sil;Lee, Sang-Ho;Yoon, Sang-Sik;Park, Hyung-Rae
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.2
    • /
    • pp.138-150
    • /
    • 2002
  • This paper addresses the problem of combining adaptive polarization processing and space-time processing for further performance improvement of radar target detection in clutter and Jammer environments. Since the most straightforward cascade combinations have quite limited performance improvement potentials, we focus on the development of adaptive processing in the joint polarization-space-time domain. Unlike a direct extension of some existing space-time processing algorithms to the joint domain, the processing algorithm developed in this paper does not need a potentially costly polarization filter bank to cover the unknown target polarization parameter. The performance of the new algorithm is derived and evaluated in terms of the probability of detection and the probability of false alarm, and it is compared with other algorithms that do not utilize the polarization information or assume that the target polarization is known.

  • PDF

Macroscopic Treatment to Unknown Malicious Mobile Codes (알려지지 않은 악성 이동 코드에 대한 거시적 대응)

  • Lee, Kang-San;Kim, Chol-Min;Lee, Seong-Uck;Hong, Man-Pyo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.6
    • /
    • pp.339-348
    • /
    • 2006
  • Recently, many researches on detecting and responding worms due to the fatal infrastructural damages explosively damaged by automated attack tools, particularly worms. Network service vulnerability exploiting worms have high propagation velocity, exhaust network bandwidth and even disrupt the Internet. Previous worm researches focused on signature-based approaches however these days, approaches based on behavioral features of worms are more highlighted because of their low false positive rate and the attainability of early detection. In this paper, we propose a Distributed Worm Detection Model based on packet marking. The proposed model detects Worm Cycle and Infection Chain among which the behavior features of worms. Moreover, it supports high scalability and feasibility because of its distributed reacting mechanism and low processing overhead. We virtually implement worm propagation environment and evaluate the effectiveness of detecting and responding worm propagation.

Automatic Defect Detection using Fuzzy Binarization and Brightness Contrast Stretching from Ceramic Images for Non-Destructive Testing (비파괴 검사를 위한 개선된 퍼지 이진화와 명암 대비 스트레칭을 이용한 세라믹 영상에서의 결함 영역 자동 검출)

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2121-2127
    • /
    • 2017
  • In this paper, we propose a computer vision based automatic defect detection method from ceramic image for non-destructive testing. From region of interest of the image, we apply brightness enhancing stretching algorithm first. One of the strength of our method is that it is designed to detect defects of images obtained from various thicknesses, that is, 8, 10, 11, 16, and 22 mm. In other cases we apply histogram based binarization algorithm. However, for 8 mm case, it may have false positive cases due to weak brightness contrast between defect and noise. Thus, we apply modified fuzzy binarization algorithm for 8 mm case. From the experiment, we verify that the proposed method shows stronger result than our previous study that used Blob labelling for all five thickness cases as expected.

Validation of Korean Meat Products and Processed Cheese for the Detection of GMO using p35S and tNOS Primers

  • Shin, Hyo-Jin;Heo, Eun-Jeong;Moon, Jin-San;Kim, Ji-Ho;Kim, Young-Jo;Park, Hyun-Jung;Yoon, Yo-Han;Kim, Jin-Man;Wee, Sung-Hwan
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.658-662
    • /
    • 2011
  • In this study, 543 samples of press hams, sausages, processed ground meat and processed cheese acquired from retail markets in Seoul and Gyeonggi province in Korea from 2005 to 2010 were monitored using a one-step multiplex polymerase chain reaction (PCR) method that involves the amplification of specific soya or maize endogenous genes and the amplification of 35S promoter (p35S) and nopaline synthase terminator (tNOS) for GMO detection. Among the 543 samples, 477 samples were amplified for maize and/or soybean endogenous genes. Although one sausage sample collected in 2008 showed amplification of tNOS, the result was assumed to be false positive based on the results from further tests of other sausage samples of the same brand. Our results demonstrate the absence of GM soya and/or maze of livestock products in the Korean market during 2005-2010. In addition, the one-step multiplex PCR using previously constructed primer sets appears to be useful as a screening method for the detection of GMOs in processed livestock products. However, more specific methods should be established and employed to detect the event-specific GM gene for positive reaction samples by screening tests in processed livestock products.

OS CFAR Computation Time Reduction Technique to Apply Radar System in Real Time (레이다 시스템 실시간 적용을 위한 OS CFAR 연산 시간 단축 방안)

  • Kong, Young-Joo;Woo, Seon-Keol;Park, Sungho;Shin, Seung-Yong;Jang, Youn Hui;Yang, Eunjung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.791-798
    • /
    • 2018
  • The CFAR algorithm is mainly used for target detection in radar systems. In particular, OS CFAR is used in a non-uniform noise environment. However, it requires a large amount of computation, because it should sort reference cells in ascending order. This makes it difficult to apply the radar system in real time. In this paper, we describe how to reduce the computational burden of OS CFAR. We compared the power of the test cell and reference cell to determine only the presence or absence of target detection. The common reference cells overlapping in the reference cells of the three test cells are obtained. We first compare the test cell with the highest power value among the three test cells to the common reference cells. Next, we compare each test cell to general reference cells, excluding the common reference cells. The computation time is shortened by reducing the power comparison computation amounts.

Development of Incident Detection Method for Interrupted Traffic Flow by Using Latin Square Analysis (라틴방격분석법을 이용한 단속류도로에서의 유고감지기법 개발)

  • Mo, Mooki;Kim, Hyung Jin;Son, Bongsoo;Kim, Dae Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.623-631
    • /
    • 2011
  • In this study, a new method which can detect incidents in interrupted traffic flow was suggested. The applied method of detecting the incident is the Latin Square Analysis Method by using traffic traits. In the Latin Square Analysis, unlike other previously tried methods, the traffic situation was analyzed, this time considering the changes in traffic traits for each lane and for each time period. The data used in this study were the data observed in the actual field with fine weather. The traffic volumes, the vehicle speed and the occupancy rate were collected on the interrupted flow road. The data were collected in normal and incident situations. The incidents occurred on the second lane, the time of persistent incidents was set to 10 minutes. The Latin Square Analyses were performed using the collected data with the traffic volume, with the vehicle speed or with the occupancy rate. As a result in this study, in case of detecting the traffic situations with Latin Square Analysis, it will be more successful to apply traffic volume to detect the traffic situations than to apply other factors.

Fault Detection Performance Analysis of GNSS Integrity RAIM (GNSS 무결성을 위한 RAIM 기법의 고장검출 성능 분석)

  • Kim, Ji Hye;Park, Kwan Dong;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.49-56
    • /
    • 2012
  • Performance analysis on RAIM, which is one of the techniques for monitoring integrity to ensure the reliability of GPS, was conducted in this study. RAIM is such a method which allows its user to monitor integrity in the stand-alone mode. Among the existing RAIM procedures, the representative methods including the RCM (Range Comparison Method), LSRM (Least Square Residual Method), Parity approach and WRAIM (Weighted RAIM) were evaluated, and their performance was analyzed. To validate the performance of the implemented algorithms, fault detection was tried on the clock malfunctioning event of PRN 23 occurred on January 1st, 2004. As a result, it was identified that the LSRM and the WRAIM detected all the faults happened in the event. In the case of RCM, all the states of fault were detected except for the error which occurred as a false alarm at one epoch. Furthermore, simulated biases were added for each satellite to analyze the sensitivity of each algorithm. Consequently, when biases of the 9-13 meters range were simulated for the RCM and LSRM algorithm, all the malfunctions were detected. For the WRAIM method, it could detect range biases greater than 15 meters.

Car License Plate Extraction Based on Detection of Numeral Regions (숫자 영역 탐색에 기반한 자동차 번호판 추출)

  • Lee, Duk-Ryong;Oh, Il-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • In this paper we propose an algorithm to extract the license plate regions from Korean car images. The idea of this paper is that we first find the four digits in the input car image and then segment the plate region using the digit information. Out method has advantage of segmenting simultaneously the plate regions and four digits regions. The first step finds and groups the connected components with proper sizes as candidate digits. The second step applies an serial alignment condition to find out probable 4-digits. In the third step, we recognize the candidate digits and assign the confidence values to each of them. The final step extracts the license plate region which has the highest confidence value. We used the Perfect Metrics classification algorithm to estimate the confidence. In our experiment, we got 97.23% and 95.45% correct detection rates, 0.09% and 0.11% false detection rates for 4,600 daytime and 264 nighttime images, respectively.

  • PDF