• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.022 seconds

Improvements in Design and Evaluation of Built-In-Test System (무기체계 정비성 향상을 위한 BIT 설계 및 검증 방안)

  • Heo, Wan-Ok;Park, Eun-Shim;Yoon, Jung-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • Built-In-Test is a design feature in more and more advanced weapon system. During development test and evaluation(DT&E) it is critical that the BIT system be evaluated. The BIT system is an integral part of the weapon system and subsystem. Built-In-Test assists in conducting on system and subsystem failure detection and isolation to the Line Replaceable Unit(LRU). This capability reduces the need for highly skilled personnel and special test equipment at organizational level, and reduces maintenance down-time of system by shortening Total Corrective Maintenance Time. During DT&E of weapon system the objective of BIT system evaluation is to determine BIT capabilities achieved and to identify deficiencies in the BIT system. As a result corrective actions are implemented while the system is still in development. Through the use of the reiterative BIT evaluation the BIT system design was corrected, improved, or updated, as the BIT system matured.

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

Shot Transition Detection by Compensating Camera Operations (카메라의 동작을 보정한 장면전환 검출)

  • Jang Seok-Woo;Choi Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.403-412
    • /
    • 2005
  • In this paper, we propose an effective method for detecting and classifying shot transitions in video sequences. The proposed method detects and classifies shot transitions including cuts, fades and dissolves by compensating camera operations in video sequences, so that our method prevents false positives resulting from camera operations. Also, our method eliminates local moving objects in the process of compensating camera operations, so that our method prevents errors resulting from moving objects. In the experiments, we show that our shot transition approach can work as a promising solution by comparing the proposed method with previously known methods in terms of performance.

Optimal Strategies for Cooperative Spectrum Sensing in Multiple Cross-over Cognitive Radio Networks

  • Hu, Hang;Xu, Youyun;Liu, Zhiwen;Li, Ning;Zhang, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3061-3080
    • /
    • 2012
  • To improve the sensing performance, cooperation among secondary users can be utilized to collect space diversity. In this paper, we focus on the optimization of cooperative spectrum sensing in which multiple cognitive users efficiently cooperate to achieve superior detection accuracy with minimum sensing error probability in multiple cross-over cognitive radio networks. The analysis focuses on two fusion strategies: soft information fusion and hard information fusion. Under soft information fusion, the optimal threshold of the energy detector is derived in both noncooperative single-user and cooperative multiuser sensing scenarios. Under hard information fusion, the optimal randomized rule and the optimal decision threshold are derived according to the rule of minimum sensing error (MSE). MSE rule shows better performance on improving the final false alarm and detection probability simultaneously. By simulations, our proposed strategy optimizes the sensing performance for each cognitive user which is randomly distributed in the multiple cross-over cognitive radio networks.

Beamforming RFID Reader based Convenient Shopping System (빔 형성 RFID 리더기를 이용한 편리한 쇼핑 시스템)

  • Park, Byeong-Wook;Choe, Sang-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.37-44
    • /
    • 2009
  • In this paper, we present a switched beamforming RFID reader and propose a convenient shopping system using it. The smart gate with the switched beamforming RFID reader(s) improves tag detection probability, tag false alarm probability, automatic detection functionality of shopping system compared to existing RFID based systems. The proposed system consists of a smart gate to read and verify the tags within cart, a check-out counter to approve customer purchase, and a central server to manage inventory & delivery and to analyze customer purchase trend. The proposed shopping system is more practical, convenient, and cost-effective to A/S than existing RFID shopping systems.

Design and Fabrication of a Digital Protection Relay for Reverse-Open Phase (디지털 역결상 보호 계전기의 설계 및 제작)

  • Kim, Woo-Hyun;Kil, Gyung-Suk;Kim, Sung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.313-319
    • /
    • 2019
  • Induction motors connected with a three-phase AC system may malfunction due to reverse phase or open phase faults. Conventional overcurrent relays and overheating relays are used to prevent such accidents; however, their drawbacks include a low response speed and false operation. Therefore, in this study, a digital relay for the reverse-open phase was designed and fabricated. This relay can detect the reverse phase and open phase faults and send a trigger signal to the control circuit. The proposed relay was developed based on a microcontroller. The detection times of the reverse phase and open phase were verified as 320ms and 80ms, respectively. Compared with conventional relays that only protect the motor from one type of fault, the proposed relay can detect both, reverse phase and open phase faults. In addition, the fault detection, identification criterion, and trigger signal patterns can be modified by programming according to the requirements of users.

Epileptic Seizure Detection for Multi-channel EEG with Recurrent Convolutional Neural Networks (순환 합성곱 신경망를 이용한 다채널 뇌파 분석의 간질 발작 탐지)

  • Yoo, Ji-Hyun
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1175-1179
    • /
    • 2018
  • In this paper, we propose recurrent CNN(Convolutional Neural Networks) for detecting seizures among patients using EEG signals. In the proposed method, data were mapped by image to preserve the spectral characteristics of the EEG signal and the position of the electrode. After the spectral preprocessing, we input it into CNN and extracted the spatial and temporal features without wavelet transform. Results from the Children's Hospital of Boston Massachusetts Institute of Technology (CHB-MIT) dataset showed a sensitivity of 90% and a false positive rate (FPR) of 0.85 per hour.

Dual deep neural network-based classifiers to detect experimental seizures

  • Jang, Hyun-Jong;Cho, Kyung-Ok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.131-139
    • /
    • 2019
  • Manually reviewing electroencephalograms (EEGs) is labor-intensive and demands automated seizure detection systems. To construct an efficient and robust event detector for experimental seizures from continuous EEG monitoring, we combined spectral analysis and deep neural networks. A deep neural network was trained to discriminate periodograms of 5-sec EEG segments from annotated convulsive seizures and the pre- and post-EEG segments. To use the entire EEG for training, a second network was trained with non-seizure EEGs that were misclassified as seizures by the first network. By sequentially applying the dual deep neural networks and simple pre- and post-processing, our autodetector identified all seizure events in 4,272 h of test EEG traces, with only 6 false positive events, corresponding to 100% sensitivity and 98% positive predictive value. Moreover, with pre-processing to reduce the computational burden, scanning and classifying 8,977 h of training and test EEG datasets took only 2.28 h with a personal computer. These results demonstrate that combining a basic feature extractor with dual deep neural networks and rule-based pre- and post-processing can detect convulsive seizures with great accuracy and low computational burden, highlighting the feasibility of our automated seizure detection algorithm.

Spatial spectrum approach for pilot spoofing attack detection in MIMO systems

  • Ning, Lina;Li, Bin;Wang, Xiang;Liu, Xiaoming;Zhao, Chenglin
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.941-949
    • /
    • 2021
  • In this study, a spatial spectrum method is proposed to cope with the pilot spoofing attack (PSA) problem by exploiting the of uplink-downlink channel reciprocity in time-division-duplex multiple-input multiple-output systems. First, the spoofing attack in the uplink stage is detected by a threshold derived from the predefined false alarm based on the estimated spatial spectrum. When the PSA occurs, the transmitter (That is Alice) can detect either one or two spatial spectrum peaks. Then, the legitimate user (That is Bob) and Eve are recognized in the downlink stage via the channel reciprocity property based on the difference between the spatial spectra if PSA occurs. This way, the presence of Eve and the direction of arrival of Eve and Bob can be identified at the transmitter end. Because noise is suppressed by a spatial spectrum, the detection performance is reliable even for low signal-noise ratios and a short training length. Consequently, Bob can use beamforming to transmit secure information during the data transmission stage. Theoretical analysis and numerical simulations are performed to evaluate the performance of the proposed scheme compared with conventional methods.

Detection and Trust Evaluation of the SGN Malicious node

  • Al Yahmadi, Faisal;Ahmed, Muhammad R
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.89-100
    • /
    • 2021
  • Smart Grid Network (SGN) is a next generation electrical power network which digitizes the power distribution grid and achieves smart, efficient, safe and secure operations of the electricity. The backbone of the SGN is information communication technology that enables the SGN to get full control of network station monitoring and analysis. In any network where communication is involved security is essential. It has been observed from several recent incidents that an adversary causes an interruption to the operation of the networks which lead to the electricity theft. In order to reduce the number of electricity theft cases, companies need to develop preventive and protective methods to minimize the losses from this issue. In this paper, we have introduced a machine learning based SVM method that detects malicious nodes in a smart grid network. The algorithm collects data (electricity consumption/electric bill) from the nodes and compares it with previously obtained data. Support Vector Machine (SVM) classifies nodes into Normal or malicious nodes giving the statues of 1 for normal nodes and status of -1 for malicious -abnormal-nodes. Once the malicious nodes have been detected, we have done a trust evaluation based on the nodes history and recorded data. In the simulation, we have observed that our detection rate is almost 98% where the false alarm rate is only 2%. Moreover, a Trust value of 50 was achieved. As a future work, countermeasures based on the trust value will be developed to solve the problem remotely.