• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.028 seconds

Performance Analysis of Cooperative Spectrum Sensing Based on Sharing Threshold among cooperative users (협력 노드의 합리적 임계치 공유를 통한 센싱 검출 성능 분석)

  • Seo, SungIl;Lee, MiSun;Kim, Jinyoung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.66-70
    • /
    • 2013
  • In this paper, Threshold setting method is proposed to improve detection probability for cooperative sensing. Even if cooperative users have all same false alarm rate, each user has different threshold due to pass ad-hoc channel. threshold level is related to detection probability. So, we select the highest threshold among cooperative users and then share threshold information for getting the high detection probability.

Unsaturated Throughput Analysis of IEEE 802.11 DCF under Imperfect Channel Sensing

  • Shin, Soo-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.989-1005
    • /
    • 2012
  • In this paper, throughput of IEEE 802.11 carrier-sense multiple access (CSMA) with collision-avoidance (CA) protocols in non-saturated traffic conditions is presented taking into account the impact of imperfect channel sensing. The imperfect channel sensing includes both missed-detection and false alarm and their impact on the utilization of IEEE 802.11 analyzed and expressed as a closed form. To include the imperfect channel sensing at the physical layer, we modified the state transition probabilities of well-known two state Markov process model. Simulation results closely match the theoretical expressions confirming the effectiveness of the proposed model. Based on both theoretical and simulated results, the choice of the best probability detection while maintaining probability of false alarm is less than 0.5 is a key factor for maximizing utilization of IEEE 802.11.

The Surface Sidelobe Clutter and the False Alarm Probability of Target Detection for the HPRF Waveform of the Microwave Seeker (마이크로파 탐색기의 HPRF 파형에 대한 지표면 부엽클러터와 표적탐지 오류 확률)

  • Kim, Tae-Hyung;Yi, Jae-Woong;Byun, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.476-483
    • /
    • 2009
  • Tracking and detecting targets by the microwave seeker is affected by the clutter reflecting from the earth's surface. In order to detect retreating targets in look-down scenario, which appear in the sidelobe clutter (SLC) region, in the microwave seeker of high pulse repetition frequency (HPRF) mode, it is necessary to understand statistical characteristics of the surface SLC. Statistical analysis of SLC has been conducted for several kinds of the surface using data obtained by the captive flight test of the microwave seeker in the HPRF mode. The probability density function (PDF) fitting is conducted for several kinds and conditions of the surface. PDFs and PDF parameters, which best describe statistical distribution of the SLC power, are estimated. By using the estimated PDFs and PDF parameters, analyses for setting the target-detection thresholds, which give a desired level of target-detection false alarm probability, are made. These analysis materials for statistical characteristics of SLC power and the target-detection threshold can be used in various fields, such as development of a target-detection method, the constant false alarm rate processing.

Face Detection Based on Thick Feature Edges and Neural Networks

  • Lee, Young-Sook;Kim, Young-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1692-1699
    • /
    • 2004
  • Many researchers have developed various techniques for detection of human faces in ordinary still images. Face detection is the first imperative step of human face recognition systems. The two main problems of human face detection are how to cutoff the running time and how to reduce the number of false positives. In this paper, we present frontal and near-frontal face detection algorithm in still gray images using a thick edge image and neural network. We have devised a new filter that gets the thick edge image. Our overall scheme for face detection consists of two main phases. In the first phase we describe how to create the thick edge image using the filter and search for face candidates using a whole face detector. It is very helpful in removing plenty of windows with non-faces. The second phase verifies for detecting human faces using component-based eye detectors and the whole face detector. The experimental results show that our algorithm can reduce the running time and the number of false positives.

  • PDF

Learning-based Improvement of CFAR Algorithm for Increasing Node-level Event Detection Performance in Acoustic Sensor Networks (음향 센서 네트워크에서의 노드 레벨 이벤트 탐지 성능향상을 위한 학습 기반 CFAR 알고리즘 개선)

  • Kim, Youngsoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.243-249
    • /
    • 2020
  • Event detection in wireless sensor networks is a key requirement in many applications. Acoustic sensors are one of the most frequently used sensors for event detection in sensor networks, but they are sensitive and difficult to handle because they vary greatly depending on the environment and target characteristics of the sensor field. In this paper, we propose a learning-based improvement of CFAR algorithm for increasing node-level event detection performance in acoustic sensor networks, and verify the effectiveness of the designed algorithm by comparing and evaluating the event detection performance with other algorithms. Our experimental results demonstrate the superiority of the proposed algorithm by increasing the detection accuracy by more than 45.16% by significantly reducing false positives by 7.97 times while slightly increasing the false negative compared to the existing algorithm.

Hybrid Fuzzy Adaptive Wiener Filtering with Optimization for Intrusion Detection

  • Sujendran, Revathi;Arunachalam, Malathi
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.502-511
    • /
    • 2015
  • Intrusion detection plays a key role in detecting attacks over networks, and due to the increasing usage of Internet services, several security threats arise. Though an intrusion detection system (IDS) detects attacks efficiently, it also generates a large number of false alerts, which makes it difficult for a system administrator to identify attacks. This paper proposes automatic fuzzy rule generation combined with a Wiener filter to identify attacks. Further, to optimize the results, simplified swarm optimization is used. After training a large dataset, various fuzzy rules are generated automatically for testing, and a Wiener filter is used to filter out attacks that act as noisy data, which improves the accuracy of the detection. By combining automatic fuzzy rule generation with a Wiener filter, an IDS can handle intrusion detection more efficiently. Experimental results, which are based on collected live network data, are discussed and show that the proposed method provides a competitively high detection rate and a reduced false alarm rate in comparison with other existing machine learning techniques.

Closely Spaced Target Detection using Intensity Sorting-based Context Awareness

  • Kim, Sungho;Won, Jin-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1839-1845
    • /
    • 2016
  • Detecting remote targets is important to active protection system (APS) or infrared search and track (IRST) applications. In normal situation, the well-known constant false alarm rate (CFAR) detector works properly. However, decoys in APS or closely spaced targets in IRST degrade the detection capability by increasing background noise level in the CFAR detector. This paper presents a context aware CFAR detector by the intensity sorting and selection of background region to reduce the effect of neighboring targets that lead to incorrect estimation of background statistics. The existence of neighboring targets can be recognized by intensity sorting where neighboring targets usually show highest ranks. The proposed background statistics (mean, standard deviation) estimation method from median local pixels can be aware of the background context and reduce the effects of the neighboring targets, which increase the signal-to-clutter ratio. The experimental results on the synthetic APS sequence, real adjacent target sequence, and remote pedestrian sequence validated that the proposed method produced an enhanced detection rate with the same false alarm rate compared with the hysteresis-CFAR (H-CFAR) detection.

A Study about False Alarm of Automatic Fire Detection System (자동화재 탐지설비의 비화재보 감소방안)

  • Lee, Jong-Hwa;Lee, Chun-Ha;Kim, Shi-Kuk;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • The automatic fire detection system is an important facility installed with focusing on minimizing the damage from a fire. This paper presents in the followings as the methods to reduce the false alarm of the automatic fire detection system; first, to prepare for legal standard so that revised legal standard can be applied to the fire fighting property prior to revision; second, to introduce the performance based fire detection protection design in the law based fire protection design; third, to maintain the wiring of worn-out detector; forth, to introduce an evaluation system to the education for the fire warden; fifth, to extend the standard of MTBF(meantime between failure) of the detector; sixth, to extend of installing the analog type detector; seventh, to improve the structure of reset switch.

Robust 3D Object Detection through Distance based Adaptive Thresholding (거리 기반 적응형 임계값을 활용한 강건한 3차원 물체 탐지)

  • Eunho Lee;Minwoo Jung;Jongho Kim;Kyongsu Yi;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.106-116
    • /
    • 2024
  • Ensuring robust 3D object detection is a core challenge for autonomous driving systems operating in urban environments. To tackle this issue, various 3D representation, including point cloud, voxels, and pillars, have been widely adopted, making use of LiDAR, Camera, and Radar sensors. These representations improved 3D object detection performance, but real-world urban scenarios with unexpected situations can still lead to numerous false positives, posing a challenge for robust 3D models. This paper presents a post-processing algorithm that dynamically adjusts object detection thresholds based on the distance from the ego-vehicle. While conventional perception algorithms typically employ a single threshold in post-processing, 3D models perform well in detecting nearby objects but may exhibit suboptimal performance for distant ones. The proposed algorithm tackles this issue by employing adaptive thresholds based on the distance from the ego-vehicle, minimizing false negatives and reducing false positives in the 3D model. The results show performance enhancements in the 3D model across a range of scenarios, encompassing not only typical urban road conditions but also scenarios involving adverse weather conditions.

Early Fire Detection System for Embedded Platforms: Deep Learning Approach to Minimize False Alarms (임베디드 플랫폼을 위한 화재 조기 감지 시스템: 오경보 최소화를 위한 딥러닝 접근 방식)

  • Seong-Jun Ro;Kwangjae Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.298-304
    • /
    • 2024
  • In Korea, fires are the second most common type of disaster, causing large-scale damages. The installation of fire detectors is legislated to prevent fires and minimize damage. Conventional fire detectors have limitations in initial suppression of failures because they detect fires when large amounts of smoke and heat are generated. Additionally, frequent malfunctions in fire detectors may cause users to turn them off. To address these issues, recent studies focus on accurately detecting even small-scale fires using multi-sensor and deep-learning technologies. They also aim at quick fire detection and thermal decomposition using gas. However, these studies are not practical because they overlook the heavy computations involved. Therefore, we propose a fast and accurate fire detection system based on multi-sensor and deep-learning technologies. In addition, we propose a computation-reduction method for selecting sensors suitable for detection using the Pearson correlation coefficient. Specifically, we use a moving average to handle outliers and two-stage labeling to reduce false detections during preprocessing. Subsequently, a deep-learning model is selected as LSTM for analyzing the temporal sequence. Then, we analyze the data using a correlation analysis. Consequently, the model using a small data group with low correlation achieves an accuracy of 99.88% and a false detection rate of 0.12%.