• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.027 seconds

Design of an Efficient VLSI Architecture for Collision Detection Based on Insect's Visual Interneuron (곤충의 시각 신경망 기반 충돌감지 기술의 효율적인 VLSI 구조 설계)

  • Jeong, Sooyong;Lee, Jaehyeon;Song, Deokyong;Park, Taegeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1671-1677
    • /
    • 2018
  • In this research, the collision detection system based on insect's visual interneuron has been designed. The lobula giant movement detector (LGMD) corresponds to the movement value that increases in direct collision process. If the collision is detected by the LGMD only, it could generate a crash warning even in a non-collision situation, resulting in a lot of false alarms. Directionally sensitive movement detectors (DSMD) are directionally sensitive algorithm based on the elementary movement detectors (EMD) in four directions (up, down, left, and right). In this paper, we propose an efficient VLSI architecture for a realtime collision detection system that is robust to the surrounding environment while improving accuracy. The proposed architecture is synthesized with Dongbu Hightech 110nm standard cell library and shows 333MHz of maximum operating frequency and requires 8400 gates with about 16.5KB of internal memories.

Coalition based Optimization of Resource Allocation with Malicious User Detection in Cognitive Radio Networks

  • Huang, Xiaoge;Chen, Liping;Chen, Qianbin;Shen, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4661-4680
    • /
    • 2016
  • Cognitive radio (CR) technology is an effective solution to the spectrum scarcity issue. Collaborative spectrum sensing is known as a promising technique to improve the performance of spectrum sensing in cognitive radio networks (CRNs). However, collaborative spectrum sensing is vulnerable to spectrum data falsification (SSDF) attack, where malicious users (MUs) may send false sensing data to mislead other secondary users (SUs) to make an incorrect decision about primary user (PUs) activity, which is one of the key adversaries to the performance of CRNs. In this paper, we propose a coalition based malicious users detection (CMD) algorithm to detect the malicious user in CRNs. The proposed CMD algorithm can efficiently detect MUs base on the Geary'C theory and be modeled as a coalition formation game. Specifically, SSDF attack is one of the key issues to affect the resource allocation process. Focusing on the security issues, in this paper, we analyze the power allocation problem with MUs, and propose MUs detection based power allocation (MPA) algorithm. The MPA algorithm is divided into two steps: the MUs detection step and the optimal power allocation step. Firstly, in the MUs detection step, by the CMD algorithm we can obtain the MUs detection probability and the energy consumption of MUs detection. Secondly, in the optimal power allocation step, we use the Lagrange dual decomposition method to obtain the optimal transmission power of each SU and achieve the maximum utility of the whole CRN. Numerical simulation results show that the proposed CMD and MPA scheme can achieve a considerable performance improvement in MUs detection and power allocation.

Development and Performance Evaluation of an Image Detection System for Efficient 4D Images (효율적인 4D 영상을 위한 영상 검출 시스템 개발 및 성능평가)

  • Cho, Kyoung-Woo;Liu, Ze-Qi;Jeon, Min-Ho;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.792-797
    • /
    • 2013
  • 4D film is just a film that made by adding some physical effects to 3D film or general film. In order to provide physical effects to the audience, the data that make the physical effect must be added to each frames. In this paper, we proposed a video detection system that can efficiently provide physical effects by assessing the present situation such as explosion scene, snowing scene. The proposed video detection system contains an algorithm for fire detection by using R color and $C_r$ value, and also an algorithm for snow detection by using RGB color model. The system constitutes in a MCU that from 8051 family. In the performance evaluations, the result shows that 91% of detection rate in case of fire and 25% of false detection rate in case of snow. Also the system is capable of providing physical effects automatically.

Development of the Algofithm for Gaussian Mixture Models based Traffic Accident Auto-Detection in Freeway (GMM(Gaussian Mixture Model)을 적용한 영상처리기법의 연속류도로 사고 자동검지 알고리즘 개발)

  • O, Ju-Taek;Im, Jae-Geuk;Yeo, Tae-Dong
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.169-183
    • /
    • 2010
  • Image-based traffic information collection systems have entered widespread adoption and use in many countries since these systems are not only capable of replacing existing loop-based detectors which have limitations in management and administration, but are also capable of providing and managing a wide variety of traffic related information. In addition, these systems are expanding rapidly in terms of purpose and scope of use. Currently, the utilization of image processing technology in the field of traffic accident management is limited to installing surveillance cameras on locations where traffic accidents are expected to occur and digitalizing of recorded data. Accurately recording the sequence of situations around a traffic accident in a freeway and then objectively and clearly analyzing how such accident occurred is more urgent and important than anything else in resolving a traffic accident. Therefore, in this research, existing technologies, this freeway attribute, velocity changes, volume changes, occupancy changes reflect judge the primary. Furthermore, We pointed out by many past researches while presenting and implementing an active and environmentally adaptive methodology capable of effectively reducing false detection situations which frequently occur even with the Gaussian Mixture model analytical method which has been considered the best among well-known environmental obstacle reduction methods. Therefore, in this way, the accident was the final decision. Also, environmental factors occur frequently, and with the index finger situations, effectively reducing that can actively and environmentally adaptive techniques through accident final judgment. This implementation of the evaluate performance of the experiment road of 12 incidents in simulated and the jang-hang IC's real-time accident experiment. As a result, the do well detection 93.33%, false alarm 6.7% as showed high reliability.

Hepatic Vessel Segmentation using Edge Detection (Edge Detection을 이용한 간 혈관 추출)

  • Seo, Jeong-Joo;Park, Jong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.3
    • /
    • pp.51-57
    • /
    • 2012
  • Hepatic vessel tree is the key structure for hepatic disease diagnosis and liver surgery planning. Especially, it is used to evaluate the donors' and recipients' liver for the LDLT(Living Donors Liver Transplantation) and estimate the volumes of left and right hepatic lobes for securing their life in the LDLT. In this study, we propose a method to apply canny edge detection that is not affected by noise to the liver images for automatic segmentation of hepatic vessels tree in contrast abdominal MDCT image. Using histograms and average pixel values of the various liver CT images, optimized parameters of the Canny algorithm are determined. It is more time-efficient to use the common parameters than to change parameters manually according to CT images. Candidates of hepatic vessels are extracted by threshold filtering around the detected the vessel edge. Finally, using a system which detects the true-negatives and the false-positives in horizontal and vertical direction, the true-negatives are added in candidate of hepatic vessels and the false-positives are removed. As a result of the process, the various hepatic vessel trees of patients are accurately reconstructed in 3D.

Reinforcement Mining Method for Anomaly Detection and Misuse Detection using Post-processing and Training Method (이상탐지(Anomaly Detection) 및 오용탐지(Misuse Detection) 분석의 정확도 향상을 위한 개선된 데이터마이닝 방법 연구)

  • Choi Yun-Jeong;Park Seung-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.238-240
    • /
    • 2006
  • 네트워크상에서 발생하는 다양한 형태의 대량의 데이터를 정확하고 효율적으로 분석하기 위해 설계되고 있는 마이닝 시스템들은 목표지향적으로 훈련데이터들을 어떻게 구축하여 다룰 것인지에 대한 문제보다는 대부분 얼마나 많은 데이터 마이닝 기법을 지원하고 이를 적용할 수 있는지 등의 기법에 초점을 두고 있다. 따라서, 점점 더 에이전트화, 분산화, 자동화 및 은닉화 되는 최근의 보안공격기법을 정확하게 탐지하기 위한 방법은 미흡한 실정이다. 본 연구에서는 유비쿼터스 환경 내에서 발생 가능한 문제 중 복잡하고 지능화된 침입패턴의 탐지를 위해 데이터 마이닝 기법과 결함허용방법을 이용하는 개선된 학습알고리즘과 후처리 방법에 의한 RTPID(Refinement Training and Post-processing for Intrusion Detection)시스템을 제안한다. 본 논문에서의 RTPID 시스템은 active learning과 post-processing을 이용하여, 네트워크 내에서 발생 가능한 침입형태들을 정확하고 효율적으로 다루어 분석하고 있다. 이는 기법에만 초점을 맞춘 기존의 데이터마이닝 분석을 개선하고 있으며, 특히 제안된 분석 프로세스를 진행하는 동안 능동학습방법의 장점을 수용하여 학습효과는 높이며 비용을 감소시킬 수 있는 자가학습방법(self learning)방법의 효과를 기대할 수 있다. 이는 관리자의 개입을 최소화하는 학습방법이면서 동시에 False Positive와 False Negative 의 오류를 매우 효율적으로 개선하는 방법으로 기대된다. 본 논문의 제안방법은 분석도구나 시스템에 의존하지 않기 때문에, 유사한 문제를 안고 있는 여러 분야의 네트웍 환경에 적용될 수 있다.더욱 높은성능을 가짐을 알 수 있다.의 각 노드의 전력이 위험할 때 에러 패킷을 발생하는 기법을 추가하였다. NS-2 시뮬레이터를 이용하여 실험을 한 결과, 제안한 기법이 AOMDV에 비해 경로 탐색 횟수가 최대 36.57% 까지 감소되었음을 알 수 있었다.의 작용보다 더 강력함을 시사하고 있다.TEX>로 최고값을 나타내었으며 그 후 감소하여 담금 10일에는 $1.61{\sim}2.34%$였다. 시험구간에는 KKR, SKR이 비교적 높은 값을 나타내었다. 무기질 함량은 발효기간이 경과할수록 증하였고 Ca는 $2.95{\sim}36.76$, Cu는 $0.01{\sim}0.14$, Fe는 $0.71{\sim}3.23$, K는 $110.89{\sim}517.33$, Mg는 $34.78{\sim}122.40$, Mn은 $0.56{\sim}5.98$, Na는 $0.19{\sim}14.36$, Zn은 $0.90{\sim}5.71ppm$을 나타내었으며, 시험구별로 보면 WNR, BNR구가 Na만 제외한 다른 무기성분 함량이 가장 높았다.O to reduce I/O cost by reusing data already present in the memory of other nodes. Finally, chunking and on-line compression mechanisms are included in both models. We demonstrate that we can obtain significantly high-performanc

  • PDF

An Experimental Study for Performance Evaluation in Dogs of Preventive Contrast Media Extravasation with a Strain Gage Based Prototype Extravasation Detection Accessory System (잡견에서 조영제 혈관외유출 예방을 위한 스트레인 게이지 기반의 EDA 시스템 성능 평가를 위한 실험적 연구)

  • Kweon, D.C.;Yoo, B.G.;Lee, J.S.;Cho, M.S.;Yang, S.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • The major risk associated with the use of automated power injectors is the well known complication of contrast material extravasation at the injection site. Automated injection of computed tomography (CT) contrast media can produce the compartment syndrome. The purpose of this study was to assess the ability of this device during clinically important episodes of extravasation. The extravasation detection accessory (EDA) system was composed of a strain gage, an amplifier and a computer based system. A strain gage pliable adhesive patch was applied to the skin aver the intravenous catheter and the catheter was connected to the power injector with a cable to monitor the resolution data. If the programmed monitoring, which was developed with MS Visual C++, at the extravasation occurred, then the injection was interrupted the auto injector. CT was used to demonstrate the clinically important extravasation. This study was a prospective, observational study in which the EDA system was used to monitor the automated mechanical injection of contrast material in 7 dogs. There were two true-positive cases (range of extravasation volumes: $18{\sim}22ml$), twenty three true-negative cases, three false-positive cases and no false-negative cases. The EDA system had a sensitivity of 100% and a specificity of 88% for the detection of clinically important extravasation. The EDA system had good sensitivity for the detection of clinically important extravasation and the EDA system has the clinical potential for the early detection of extravasation of the contrast medium that is administered with power injectors. The EDA system is easy to use safe and accurate for the monitoring extravasation of the intravenous injections, and this system may prove especially useful in CT applications.

Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem (데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석)

  • Lee, Jong-Hwa;Bang, Jiwon;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.18-28
    • /
    • 2020
  • With the development of the virtual community, the benefits that IT technology provides to people in fields such as healthcare, industry, communication, and culture are increasing, and the quality of life is also improving. Accordingly, there are various malicious attacks targeting the developed network environment. Firewalls and intrusion detection systems exist to detect these attacks in advance, but there is a limit to detecting malicious attacks that are evolving day by day. In order to solve this problem, intrusion detection research using machine learning is being actively conducted, but false positives and false negatives are occurring due to imbalance of the learning dataset. In this paper, a Random Oversampling method is used to solve the unbalance problem of the UNSW-NB15 dataset used for network intrusion detection. And through experiments, we compared and analyzed the accuracy, precision, recall, F1-score, training and prediction time, and hardware resource consumption of the models. Based on this study using the Random Oversampling method, we develop a more efficient network intrusion detection model study using other methods and high-performance models that can solve the unbalanced data problem.

$^{99m}Tc$-Tetrofosmin Scintimammography in Suspected Breast Cancer Patients: Comparison with $^{99m}Tc$-MIBI (유방암이 의심되는 환자에서 $^{99m}Tc$-Tetrofosmin을 이용한 유방스캔: $^{99m}Tc$-MIBI와 비교)

  • Kim, Seong-Jang;Kim, In-Ju;Kim, Yong-Ki;Bae, Young-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.2
    • /
    • pp.119-128
    • /
    • 2000
  • Purpose: The aim of this study was to investigate the diagnostic role of $^{99m}Tc$-Tetrofosmin in detection of breast cancer and compared with that of $^{99m}Tc$-MIBI. Material and Methods: Forty-eight patients with a clinically palpable mass or abnormal mammographic or ultrasonographic findings had $^{99m}Tc-MIBI\;and\;^{99m}Tc$-Tetrofosmin scintimammographies after intravenous injection of 925 MBq of radiopharmaceuticals. The scintimammographs were correlated with histopathologic findings. Results: Thirty-three patients were diagnosed with breast cancer and 15 patients with benign breast diseases. The numbers of true positive, true negative, false positive, and false negative cases of $^{99m}Tc$-MIBI scintimammography were 29, 10, 5, and 4 respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of $^{99m}Tc$-MIBI scintimammographies were 87.8%, 66.7%, 85.3%, and 71.4% respectively. The numbers of true positive, true negative, false positive, and false negative cases of $^{99m}Tc$-Tetrofosmin were 31,10, 5, and 2 respectively. The sensitivity, specificity, positive predictive value, negative predictive value of $^{99m}Tc$-Tetrofosmin were 93.9%, 66.7%, 86.1%, and 73.3% respectively. One patient was false negative in both $^{99m}Tc-MIBI\;and\;^{99m}Tc$-Tetrofosmin acintimammographies and its size was 0.5 cm. Conclusion: $^{99m}Tc-Tetrofosmin\;and\;^{99m}Tc-MIBI$ were non-invasive and useful in detection of breast cancer and $^{99m}Tc$-Tetrofosmin was comparable to the $^{99m}Tc$-MIBI in detection of primary breast cancer.

  • PDF

Vehicle Classification by Road Lane Detection and Model Fitting Using a Surveillance Camera

  • Shin, Wook-Sun;Song, Doo-Heon;Lee, Chang-Hun
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • One of the important functions of an Intelligent Transportation System (ITS) is to classify vehicle types using a vision system. We propose a method using machine-learning algorithms for this classification problem with 3-D object model fitting. It is also necessary to detect road lanes from a fixed traffic surveillance camera in preparation for model fitting. We apply a background mask and line analysis algorithm based on statistical measures to Hough Transform (HT) in order to remove noise and false positive road lanes. The results show that this method is quite efficient in terms of quality.