• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.037 seconds

Apple Detection Algorithm based on an Improved SSD (개선 된 SSD 기반 사과 감지 알고리즘)

  • Ding, Xilong;Li, Qiutan;Wang, Xufei;Chen, Le;Son, Jinku;Song, Jeong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.81-89
    • /
    • 2021
  • Under natural conditions, Apple detection has the problems of occlusion and small object detection difficulties. This paper proposes an improved model based on SSD. The SSD backbone network VGG16 is replaced with the ResNet50 network model, and the receptive field structure RFB structure is introduced. The RFB model amplifies the feature information of small objects and improves the detection accuracy of small objects. Combined with the attention mechanism (SE) to filter out the information that needs to be retained, the semantic information of the detection objectis enhanced. An improved SSD algorithm is trained on the VOC2007 data set. Compared with SSD, the improved algorithm has increased the accuracy of occlusion and small object detection by 3.4% and 3.9%. The algorithm has improved the false detection rate and missed detection rate. The improved algorithm proposed in this paper has higher efficiency.

Development of Hazardous Objects Detection Technology based on Metal/Non-Metal Detector (금속/비금속 복합센서기반 위험물 탐지기술 개발)

  • Yoo, Dong-Su;Kim, Seok-Hwan;Lee, Jeong-Yeob;Lee, Seok-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.120-125
    • /
    • 2014
  • Conventional handheld metal detectors use a single induction coil to detect the metallic parts of explosive objects, and the detector generates an acoustic signal from its magnetic response to a metallic object so that an operator can confirm the existence of mines. Though metal detectors have very useful detection mechanisms to find mines, it is easy to cause a high false alarm ratio due to the detection of non-explosive metallic items such as cans, nails and other pieces of metal, etc. Also, because of the physical characteristic of a metal detector it is hard to detect non-metallic objects such as mines made of wood or plastic. Furthermore, the operator must move it to the left and right slowly and repeatedly to attain enough sensor signals to confirm the existence of mines using only a monotonous acoustic signal. To resolve the disadvantages of handheld detectors, many new approaches have been attempted, such as an arrayed detector and a visualization algorithm based on metal/non-metal sensor. In this paper, we introduce a visualization algorithm with a metal/non-metal complex sensor, an arrayed metal/non-metal sensor and the their testing and evaluation.

Design of Multi-Level Abnormal Detection System Suitable for Time-Series Data (시계열 데이터에 적합한 다단계 비정상 탐지 시스템 설계)

  • Chae, Moon-Chang;Lim, Hyeok;Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.1-7
    • /
    • 2016
  • As new information and communication technologies evolve, security threats are also becoming increasingly intelligent and advanced. In this paper, we analyze the time series data continuously entered through a series of periods from the network device or lightweight IoT (Internet of Things) devices by using the statistical technique and propose a system to detect abnormal behaviors of the device or abnormality based on the analysis results. The proposed system performs the first level abnormal detection by using previously entered data set, thereafter performs the second level anomaly detection according to the trust bound configured by using stored time series data based on time attribute or group attribute. Multi-level analysis is able to improve reliability and to reduce false positives as well through a variety of decision data set.

Vehicle Detection Using Optimal Features for Adaboost (Adaboost 최적 특징점을 이용한 차량 검출)

  • Kim, Gyu-Yeong;Lee, Geun-Hoo;Kim, Jae-Ho;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1129-1135
    • /
    • 2013
  • A new vehicle detection algorithm based on the multiple optimal Adaboost classifiers with optimal feature selection is proposed. It consists of two major modules: 1) Theoretical DDISF(Distance Dependent Image Scaling Factor) based image scaling by site modeling of the installed cameras. and 2) optimal features selection by Haar-like feature analysis depending on the distance of the vehicles. The experimental results of the proposed algorithm shows improved recognition rate compare to the previous methods for vehicles and non-vehicles. The proposed algorithm shows about 96.43% detection rate and about 3.77% false alarm rate. These are 3.69% and 1.28% improvement compared to the standard Adaboost algorithmt.

Performance Comparison of Commercial and Customized CNN for Detection in Nodular Lung Cancer (결절성 폐암 검출을 위한 상용 및 맞춤형 CNN의 성능 비교)

  • Park, Sung-Wook;Kim, Seunghyun;Lim, Su-Chang;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.729-737
    • /
    • 2020
  • Screening with low-dose spiral computed tomography (LDCT) has been shown to reduce lung cancer mortality by about 20% when compared to standard chest radiography. One of the problems arising from screening programs is that large amounts of CT image data must be interpreted by radiologists. To solve this problem, automated detection of pulmonary nodules is necessary; however, this is a challenging task because of the high number of false positive results. Here we demonstrate detection of pulmonary nodules using six off-the-shelf convolutional neural network (CNN) models after modification of the input/output layers and end-to-end training based on publicly databases for comparative evaluation. We used the well-known CNN models, LeNet-5, VGG-16, GoogLeNet Inception V3, ResNet-152, DensNet-201, and NASNet. Most of the CNN models provided superior results to those of obtained using customized CNN models. It is more desirable to modify the proven off-the-shelf network model than to customize the network model to detect the pulmonary nodules.

Traffic Collision Detection at Intersections based on Motion Vector and Staying Period of Vehicles (차량의 움직임 벡터와 체류시간 기반의 교차로 추돌 검출)

  • Shin, Youn-Chul;Park, Joo-Heon;Lee, Myeong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.90-97
    • /
    • 2013
  • Recently, intelligent transportation system based on image processing has been developed. In this paper, we propose a collision detection algorithm based on the analysis of motion vectors and the staying periods of vehicles in intersections. Objects in the region of interest are extracted from the subtraction image between background images based on Gaussian mixture model and input images. Collisions and traffic jams are detected by analysing measured motion vectors of vehicles and their staying periods in intersections. Experiments are performed on video sequences actually recoded at intersections. Correct detection rate and false alarm rate are 85.7% and 7.7%, respectively.

Moving Target Detection Algorithm for FMCW Automotive Radar (FMCW 차량용 레이더의 이동타겟 탐지 알고리즘 제안)

  • Hyun, Eu-Gin;Oh, Woo-Jin;Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.27-32
    • /
    • 2010
  • 77GHz FMCW(Frequency Modulation Continuous Wave) radar system has been used for automotive active safety systems. In typical automotive radar, the moving target detection and clutter cancellation including stationary targets are very important signal processing algorithms. This paper proposed the moving target detection algorithm which improve the detection probability and reduce the false alarm rate. First, the proposed moving target beat-frequency extraction filter is used in order to suppress clutter, and then the data association is applied by using the extracted moving target beat-frequency. Then, the zero-Doppler target is eliminated to remove the rest of clutter.

An Anomaly Detection Method for the Security of VANETs (VANETs의 보안을 위한 비정상 행위 탐지 방법)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.77-83
    • /
    • 2010
  • Vehicular Ad Hoc Networks are self-organizing Peer-to-Peer networks that typically have highly mobile vehicle nodes, moving at high speeds, very short-lasting and unstable communication links. VANETs are formed without fixed infrastructure, central administration, and dedicated routing equipment, and network nodes are mobile, joining and leaving the network over time. So, VANET-security is very vulnerable for the intrusion of malicious and misbehaving nodes in the network, since VANETs are mostly open networks, allowing everyone connect, without centralized control. In this paper, we propose a rough set based anomaly detection method that efficiently identify malicious behavior of vehicle node activities in these VANETs, and the performance of a proposed scheme is evaluated by a simulation in terms of anomaly detection rate and false alarm rate for the threshold ${\epsilon}$.

Fire Detection using Color and Motion Models

  • Lee, Dae-Hyun;Lee, Sang Hwa;Byun, Taeuk;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.237-245
    • /
    • 2017
  • This paper presents a fire detection algorithm using color and motion models from video sequences. The proposed method detects change in color and motion of overall regions for detecting fire, and thus, it can be implemented in both fixed and pan/tilt/zoom (PTZ) cameras. The proposed algorithm consists of three parts. The first part exploits color models of flames and smoke. The candidate regions in the video frames are extracted with the hue-saturation-value (HSV) color model. The second part models the motion information of flames and smoke. Optical flow in the fire candidate region is estimated, and the spatial-temporal distribution of optical flow vectors is analyzed. The final part accumulates the probability of fire in successive video frames, which reduces false-positive errors when fire-like color objects appear. Experimental results from 100 fire videos are shown, where various types of smoke and flames appear in indoor and outdoor environments. According to the experiments and the comparison, the proposed fire detection algorithm works well in various situations, and outperforms the conventional algorithms.

A Smart Framework for Mobile Botnet Detection Using Static Analysis

  • Anwar, Shahid;Zolkipli, Mohamad Fadli;Mezhuyev, Vitaliy;Inayat, Zakira
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2591-2611
    • /
    • 2020
  • Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased drastically, especially on the Android platform. Severe network disruptions through massive coordinated attacks result in large financial and ethical losses. The increase in the number of botnet attacks brings the challenges for detection of harmful software. This study proposes a smart framework for mobile botnet detection using static analysis. This technique combines permissions, activities, broadcast receivers, background services, API and uses the machine-learning algorithm to detect mobile botnets applications. The prototype was implemented and used to validate the performance, accuracy, and scalability of the proposed framework by evaluating 3000 android applications. The obtained results show the proposed framework obtained 98.20% accuracy with a low 0.1140 false-positive rate.