• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.033 seconds

Forest Fire Detection and Identification Using Image Processing and SVM

  • Mahmoud, Mubarak Adam Ishag;Ren, Honge
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.159-168
    • /
    • 2019
  • Accurate forest fires detection algorithms remain a challenging issue, because, some of the objects have the same features with fire, which may result in high false alarms rate. This paper presents a new video-based, image processing forest fires detection method, which consists of four stages. First, a background-subtraction algorithm is applied to detect moving regions. Secondly, candidate fire regions are determined using CIE $L{\ast}a{\ast}b{\ast}$ color space. Thirdly, special wavelet analysis is used to differentiate between actual fire and fire-like objects, because candidate regions may contain moving fire-like objects. Finally, support vector machine is used to classify the region of interest to either real fire or non-fire. The final experimental results verify that the proposed method effectively identifies the forest fires.

Quickest Spectrum Sensing Approaches for Wideband Cognitive Radio Based On STFT and CS

  • Zhao, Qi;Qiu, Wei;Zhang, Boxue;Wang, Bingqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1199-1212
    • /
    • 2019
  • This paper proposes two wideband spectrum sensing approaches: (i) method A, the cumulative sum (CUSUM) algorithm with short-time Fourier transform, taking advantage of the time-frequency analysis for wideband spectrum. (ii)method B, the quickest spectrum sensing with short-time Fourier transform and compressed sensing, shortening the time of perception and improving the speed of spectrum access or exit. Moreover, method B can take advantage of the sparsity of wideband signals, sampling in the sub-Nyquist rate, and it is more suitable for wideband spectrum sensing. Simulation results show that method A significantly outperforms the single serial CUSUM detection for small SNRs, while method B is substantially better than the block detection based spectrum sensing in small probability of the false alarm.

Traffic Flooding Attack Detection on SNMP MIB Using SVM (SVM을 이용한 SNMP MIB에서의 트래픽 폭주 공격 탐지)

  • Yu, Jae-Hak;Park, Jun-Sang;Lee, Han-Sung;Kim, Myung-Sup;Park, Dai-Hee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Recently, as network flooding attacks such as DoS/DDoS and Internet Worm have posed devastating threats to network services, rapid detection and proper response mechanisms are the major concern for secure and reliable network services. However, most of the current Intrusion Detection Systems(IDSs) focus on detail analysis of packet data, which results in late detection and a high system burden to cope with high-speed network environment. In this paper we propose a lightweight and fast detection mechanism for traffic flooding attacks. Firstly, we use SNMP MIB statistical data gathered from SNMP agents, instead of raw packet data from network links. Secondly, we use a machine learning approach based on a Support Vector Machine(SVM) for attack classification. Using MIB and SVM, we achieved fast detection with high accuracy, the minimization of the system burden, and extendibility for system deployment. The proposed mechanism is constructed in a hierarchical structure, which first distinguishes attack traffic from normal traffic and then determines the type of attacks in detail. Using MIB data sets collected from real experiments involving a DDoS attack, we validate the possibility of our approaches. It is shown that network attacks are detected with high efficiency, and classified with low false alarms.

Vehicle Detection and Tracking using Billboard Sweep Stereo Matching Algorithm (빌보드 스윕 스테레오 시차정합 알고리즘을 이용한 차량 검출 및 추적)

  • Park, Min Woo;Won, Kwang Hee;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.764-781
    • /
    • 2013
  • In this paper, we propose a highly precise vehicle detection method with low false alarm using billboard sweep stereo matching and multi-stage hypothesis generation. First, we capture stereo images from cameras established in front of the vehicle and obtain the disparity map in which the regions of ground plane or background are removed using billboard sweep stereo matching algorithm. And then, we perform the vehicle detection and tracking on the labeled disparity map. The vehicle detection and tracking consists of three steps. In the learning step, the SVM(support vector machine) classifier is obtained using the features extracted from the gabor filter. The second step is the vehicle detection which performs the sobel edge detection in the image of the left camera and extracts candidates of the vehicle using edge image and billboard sweep stereo disparity map. The final step is the vehicle tracking using template matching in the next frame. Removal process of the tracking regions improves the system performance in the candidate region of the vehicle on the succeeding frames.

A Comparative Study of Text analysis and Network embedding Methods for Effective Fake News Detection (효과적인 가짜 뉴스 탐지를 위한 텍스트 분석과 네트워크 임베딩 방법의 비교 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • Fake news is a form of misinformation that has the advantage of rapid spreading of information on media platforms that users interact with, such as social media. There has been a lot of social problems due to the recent increase in fake news. In this paper, we propose a method to detect such false news. Previous research on fake news detection mainly focused on text analysis. This research focuses on a network where social media news spreads, generates qualities with DeepWalk, a network embedding method, and classifies fake news using logistic regression analysis. We conducted an experiment on fake news detection using 211 news on the Internet and 1.2 million news diffusion network data. The results show that the accuracy of false network detection using network embedding is 10.6% higher than that of text analysis. In addition, fake news detection, which combines text analysis and network embedding, does not show an increase in accuracy over network embedding. The results of this study can be effectively applied to the detection of fake news that organizations spread online.

Development of Urban Wildlife Detection and Analysis Methodology Based on Camera Trapping Technique and YOLO-X Algorithm (카메라 트래핑 기법과 YOLO-X 알고리즘 기반의 도시 야생동물 탐지 및 분석방법론 개발)

  • Kim, Kyeong-Tae;Lee, Hyun-Jung;Jeon, Seung-Wook;Song, Won-Kyong;Kim, Whee-Moon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.4
    • /
    • pp.17-34
    • /
    • 2023
  • Camera trapping has been used as a non-invasive survey method that minimizes anthropogenic disturbance to ecosystems. Nevertheless, it is labor-intensive and time-consuming, requiring researchers to quantify species and populations. In this study, we aimed to improve the preprocessing of camera trapping data by utilizing an object detection algorithm. Wildlife monitoring using unmanned sensor cameras was conducted in a forested urban forest and a green space on a university campus in Cheonan City, Chungcheongnam-do, Korea. The collected camera trapping data were classified by a researcher to identify the occurrence of species. The data was then used to test the performance of the YOLO-X object detection algorithm for wildlife detection. The camera trapping resulted in 10,500 images of the urban forest and 51,974 images of green spaces on campus. Out of the total 62,474 images, 52,993 images (84.82%) were found to be false positives, while 9,481 images (15.18%) were found to contain wildlife. As a result of wildlife monitoring, 19 species of birds, 5 species of mammals, and 1 species of reptile were observed within the study area. In addition, there were statistically significant differences in the frequency of occurrence of the following species according to the type of urban greenery: Parus varius(t = -3.035, p < 0.01), Parus major(t = 2.112, p < 0.05), Passer montanus(t = 2.112, p < 0.05), Paradoxornis webbianus(t = 2.112, p < 0.05), Turdus hortulorum(t = -4.026, p < 0.001), and Sitta europaea(t = -2.189, p < 0.05). The detection performance of the YOLO-X model for wildlife occurrence was analyzed, and it successfully classified 94.2% of the camera trapping data. In particular, the number of true positive predictions was 7,809 images and the number of false negative predictions was 51,044 images. In this study, the object detection algorithm YOLO-X model was used to detect the presence of wildlife in the camera trapping data. In this study, the YOLO-X model was used with a filter activated to detect 10 specific animal taxa out of the 80 classes trained on the COCO dataset, without any additional training. In future studies, it is necessary to create and apply training data for key occurrence species to make the model suitable for wildlife monitoring.

Malicious Packet Detection Technology Using Machine Learning and Deep Learning (머신러닝과 딥러닝을 활용한 악성 패킷 탐지 기술 연구)

  • Byounguk An;JongChan Lee;JeSung Chi;Wonhyung Park
    • Convergence Security Journal
    • /
    • v.21 no.4
    • /
    • pp.109-115
    • /
    • 2021
  • Currently, with the development of 5G and IoT technology, it is being used in connection with the things used in real life through a network. However, attempts to use networked computers for malicious purposes are increasing, and attacks using malicious codes that infringe the confidentiality and integrity of user information are becoming more intelligent. As a countermeasure to this, research is being conducted on a method of detecting malicious packets using a security control system and AI technology, supervised learning. The cyber security control system is being operated inefficiently in terms of manpower and cost. In addition, in the era of the COVID-19 pandemic, remote work has increased, making it difficult to respond immediately. In addition, malicious code detection using the existing AI technology, supervised learning, does not detect variant malicious code, and has an inaccurate malicious code detection rate depending on the quantity and quality of data. Therefore, in this study, by converging malicious packet detection technologies through various machine learning and deep learning models, the accuracy of malicious packet detection is increased, the false positive rate and the false positive rate are reduced, and a new type of malicious packet can be efficiently detected when intrusion. We propose a malicious packet detection technology.

An Architecture Design of Distributed Internet Worm Detection System for Fast Response

  • Lim, Jung-Muk;Han, Young-Ju;Chung, Tai-Myoung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.161-164
    • /
    • 2005
  • As the power of influence of the Internet grows steadily, attacks against the Internet can cause enormous monetary damages nowadays. A worm can not only replicate itself like a virus but also propagate itself across the Internet. So it infects vulnerable hosts in the Internet and then downgrades the overall performance of the Internet or makes the Internet not to work. To response this, worm detection and prevention technologies are developed. The worm detection technologies are classified into two categories, host based detection and network based detection. Host based detection methods are a method which checks the files that worms make, a method which checks the integrity of the file systems and so on. Network based detection methods are a misuse detection method which compares traffic payloads with worm signatures and anomaly detection methods which check inbound/outbound scan rates, ICMP host/port unreachable message rates, and TCP RST packet rates. However, single detection methods like the aforementioned can't response worms' attacks effectively because worms attack the Internet in the distributed fashion. In this paper, we propose a design of distributed worm detection system to overcome the inefficiency. Existing distributed network intrusion detection systems cooperate with each other only with their own information. Unlike this, in our proposed system, a worm detection system on a network in which worms select targets and a worm detection system on a network in which worms propagate themselves cooperate with each other with the direction-aware information in terms of worm's lifecycle. The direction-aware information includes the moving direction of worms and the service port attacked by worms. In this way, we can not only reduce false positive rate of the system but also prevent worms from propagating themselves across the Internet through dispersing the confirmed worm signature.

  • PDF

Value of Sentinel Lymph Node Biopsy in Breast Cancer Surgery with Simple Pathology Facilities -An Iranian Local Experience with a Review of Potential Causes of False Negative Results

  • Amoui, Mahasti;Akbari, Mohammad Esmail;Tajeddini, Araam;Nafisi, Nahid;Raziei, Ghasem;Modares, Seyed Mahdi;Hashemi, Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5385-5389
    • /
    • 2012
  • Introduction: Sentinel lymph node biopsy (SLNB) is a precise procedure for lymphatic staging in early breast cancer. In a valid SLNB procedure, axillary lymph node dissection (ALND) can be omitted in nodenegative cases without compromising patient safety. In this study, detection rate, accuracy and false negative rate of SLNB for breast cancer was evaluated in a setting with simple modified conventional pathology facilities without any serial sectioning or immunohistochemistry. Material and Medthod: Patients with confirmed breast cancer were enrolled in the study. SLNB and ALND were performed in all cases. Lymph node metastasis was evaluated in SLN and in nodes removed by ALND to determine the false negative rate. Pathologic assessment was carried out only by modified conventional technique with only 3 sections. Detection rate was determined either by lymphoscintigraphy or during surgery. Results: 78 patients with 79 breast units were evaluated. SLN was detected in 75 of 79 cases (95%) in lymphoscintigraphy and 76 of 79 cases (96%) during surgery. SLN metastases was detected in 30 of 75 (40%) cases either in SLNB and ALND groups. Accuracy of SLNB method for detecting LN metastases was 92%. False negative rate was 3 of 30 of positive cases: 10%. In 7 of 10 cases with axillary lymphadenopathy, LN metastastates was detected. Conclusion: SLNB is recommended for patients with various tumor sizes without palpable lymph nodes. In modified conventional pathologic examination of SLNs, at least macrometastases and some micrometastases could be detected similar to ALND. Consequently, ALND could be omitted in node-negative cases with removal of all palpable LNs. We conclude that SLNB, as one of the most important developments in breast cancer surgery, could be expanded even in areas without sophisticated pathology facilities.

A Practical Feature Extraction for Improving Accuracy and Speed of IDS Alerts Classification Models Based on Machine Learning (기계학습 기반 IDS 보안이벤트 분류 모델의 정확도 및 신속도 향상을 위한 실용적 feature 추출 연구)

  • Shin, Iksoo;Song, Jungsuk;Choi, Jangwon;Kwon, Taewoong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.385-395
    • /
    • 2018
  • With the development of Internet, cyber attack has become a major threat. To detect cyber attacks, intrusion detection system(IDS) has been widely deployed. But IDS has a critical weakness which is that it generates a large number of false alarms. One of the promising techniques that reduce the false alarms in real time is machine learning. However, there are problems that must be solved to use machine learning. So, many machine learning approaches have been applied to this field. But so far, researchers have not focused on features. Despite the features of IDS alerts are important for performance of model, the approach to feature is ignored. In this paper, we propose new feature set which can improve the performance of model and can be extracted from a single alarm. New features are motivated from security analyst's know-how. We trained and tested the proposed model applied new feature set with real IDS alerts. Experimental results indicate the proposed model can achieve better accuracy and false positive rate than SVM model with ordinary features.