• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.026 seconds

Optimization of the Validation Region for Target Tracking Using an Adaptive Detection Threshold (탐지문턱값 적응기법을 이용한 표적추적 유효화 영역의 최적화)

  • Choe, Seong-Rin;Kim, Yong-Sik;Hong, Geum-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.75-82
    • /
    • 2002
  • It is useful to detect the tracking error with an optimal view in the presence of measurement origin uncertainty. In this paper, after the investigation of the targer error dependent on the detection threshold as well as the detection and false alarm probabilities in a clutter environment, a new algorothm that optimizes the threshold of validation region for target trackinf is proposed. The performance of the algorithm is demonstrated through computer simulations.

Robust Feature Extraction for Voice Activity Detection in Nonstationary Noisy Environments (음성구간검출을 위한 비정상성 잡음에 강인한 특징 추출)

  • Hong, Jungpyo;Park, Sangjun;Jeong, Sangbae;Hahn, Minsoo
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • This paper proposes robust feature extraction for accurate voice activity detection (VAD). VAD is one of the principal modules for speech signal processing such as speech codec, speech enhancement, and speech recognition. Noisy environments contain nonstationary noises causing the accuracy of the VAD to drastically decline because the fluctuation of features in the noise intervals results in increased false alarm rates. In this paper, in order to improve the VAD performance, harmonic-weighted energy is proposed. This feature extraction method focuses on voiced speech intervals and weighted harmonic-to-noise ratios to determine the amount of the harmonicity to frame energy. For performance evaluation, the receiver operating characteristic curves and equal error rate are measured.

Design of Receiver Algorithms for VDL Mode-2 Systems (VDL Mode-2 시스템을 위한 수신 알고리듬 설계)

  • Lee, Hui-Soo;Lee, Ji-Yeon;Park, Hyo-Bae;Oh, Wang-Rok
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.6-8
    • /
    • 2009
  • In this paper. we propose receiver algorithms for VHF(Very High Frequency) digital link mode-2(VDL Mode-2) systems. Unlike conventional digital communication systems using the root raised cosine filter as a transmit and receive filter, raised cosine filter is used as a transmit filter in VDL Mode-2 systems. Hence, it is crucial to design and implement the optimum lowpass receive filter by considering the amount of inter-symbol interference and noise performance. On the other hand, due to the short preamble pattern, it is crucial to develop an efficient packet detection algorithm for reliable communication link. In this paper, we design the optimum receive filter and packet detection algorithm and evaluate the performance of receiver adopting the proposed receive filter and packet detection algorithm.

  • PDF

Double Faults Isolation Based on the Reduced-Order Parity Vectors in Redundant Sensor Configuration

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.155-160
    • /
    • 2007
  • A fault detection and isolation (FDI) problem is considered for inertial sensors, such as gyroscopes and accelerometers and a new FDI method for double faults is proposed using reduced-order parity vector. The reduced-order parity vector (RPV) algorithm enables us to isolate double faults with 7 sensors. Averaged parity vector is used to reduce false alarm and wrong isolation, and to improve correct isolation. The RPV algorithm is analyzed by Monte-Carlo simulation and the performance is given through fault detection probability, correct isolation probability, and wrong isolation probability.

Architecture of Signal Processing Module for Multi-Target Detection in Automotive FMCW Radar (차량용 FMCW 레이더의 다중 타겟 검출을 위한 신호처리부 구조 제안)

  • Hyun, EuGin;Oh, WooJin;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.2
    • /
    • pp.93-102
    • /
    • 2010
  • The FMCW(Frequency Modulation Continuous Wave) radar possesses range-velocity ambiguity to identify the correct combination of beat frequencies for each target in the multi-target situation. It can lead to ghost targets and missing targets, and it can reduce the detection probability. In this pap er, we propose an effective identification algorithm for the correct pairs of beat frequencies and the signal processing hardware architecture to effectively support the algorithm. First, using the correlation of the detected up- and down-beat frequencies and Doppler frequencies, the possible combinations are determined. Then, final pairing algorithm is completed with the power spectrum density of the correlated up- and down-beat frequencies. The proposed hardware processor has the basic architecture consisting of beat-frequency registers, pairing table memory, and decision unit. This method will be useful to improve the radar detection probability and reduce the false alarm rate.

Automatic Detection of Korean Accentual Phrase Boundaries

  • Lee, Ki-Yeong;Song, Min-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1E
    • /
    • pp.27-31
    • /
    • 1999
  • Recent linguistic researches have brought into focus the relations between prosodic structures and syntactic, semantic or phonological structures. Most of them prove that prosodic information is available for understanding syntactic, semantic and discourse structures. But this result has not been integrated yet into recent Korean speech recognition or understanding systems. This study, as a part of integrating prosodic information into the speech recognition system, proposes an automatic detection technique of Korean accentual phrase boundaries by using one-stage DP, and the normalized pitch pattern. For making the normalized pitch pattern, this study proposes a method of modified normalization for Korean spoken language. For the experiment, this study employs 192 sentential speech data of 12 men's voice spoken in standard Korean, in which 720 accentual phrases are included, and 74.4% of the accentual phrase boundaries are correctly detected while 14.7% are the false detection rate.

  • PDF

A Study on the Lung Nodule Detection Usign Difference Image of Right and Left Side in Chest X-Ray (흉부X선 영상에서의 좌우영상차를 이용한 노듈검출에 관한 연구)

  • Mun, Seong-Bae;Park, Gwang-Seok;Min, Byeong-Gu
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.209-216
    • /
    • 1990
  • Pulmonary nodules in chest X-Ray images were detected using the symmetric property of human lung and its performance was evaluated. Thls algorithm reduced the effect of background components and enhanced the nodule signals relatively. The image was divided and processed separately, the half with matched filter only, and the other half with warping and matched filter. This algorithm increased the entire detection rate by reducing False-Positive error and improving True-Positive detectability. Result shows 10-25 % improvement in detection rate compared with the conventional alsorithm for nodules size of 10mm.

  • PDF

Investigation of Polarimetric SAR Remote Sensing for Landslide Detection Using PALSAR-2 Quad-pol Data

  • Cho, KeunHoo;Park, Sang-Eun;Cho, Jae-Hyoung;Moon, Hyoi;Han, Seung-hoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.591-600
    • /
    • 2018
  • Recent SAR systems provide fully polarimetric SAR data, which is known to be useful in a variety of applications such as disaster monitoring, target recognition, and land cover classification. The objective of this study is to evaluate the performance of polarization SAR data for landslide detection. The detectability of different SAR parameters was investigated based on the supervised classification approach. The classifier used in this study is the Adaptive Boosting algorithms. A fully polarimetric L-band PALSAR-2 data was used to examine landslides caused by the 2016 Kumamoto earthquake in Kyushu, Japan. Experimental results show that fully polarimetric features from the target decomposition technique can provide improved detectability of landslide site with significant reduction of false alarms as compared with the single polarimetric observables.

On using Bayes Risk for Data Association to Improve Single-Target Multi-Sensor Tracking in Clutter (Bayes Risk를 이용한 False Alarm이 존재하는 환경에서의 단일 표적-다중센서 추적 알고리즘)

  • 김경택;최대범;안병하;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.159-162
    • /
    • 2001
  • In this Paper, a new multi-sensor single-target tracking method in cluttered environment is proposed. Unlike the established methods such as probabilistic data association filter (PDAF), the proposed method intends to reflect the information in detection phase into parameters in tracking so as to reduce uncertainty due to clutter. This is achieved by first modifying the Bayes risk in Bayesian detection criterion to incorporate the likelihood of measurements from multiple sensors. The final estimate is then computed by taking a linear combination of the likelihood and the estimate of measurements. We develop the procedure and discuss the results from representative simulations.

  • PDF

Fake News Detection Using Deep Learning

  • Lee, Dong-Ho;Kim, Yu-Ri;Kim, Hyeong-Jun;Park, Seung-Myun;Yang, Yu-Jun
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1119-1130
    • /
    • 2019
  • With the wide spread of Social Network Services (SNS), fake news-which is a way of disguising false information as legitimate media-has become a big social issue. This paper proposes a deep learning architecture for detecting fake news that is written in Korean. Previous works proposed appropriate fake news detection models for English, but Korean has two issues that cannot apply existing models: Korean can be expressed in shorter sentences than English even with the same meaning; therefore, it is difficult to operate a deep neural network because of the feature scarcity for deep learning. Difficulty in semantic analysis due to morpheme ambiguity. We worked to resolve these issues by implementing a system using various convolutional neural network-based deep learning architectures and "Fasttext" which is a word-embedding model learned by syllable unit. After training and testing its implementation, we could achieve meaningful accuracy for classification of the body and context discrepancies, but the accuracy was low for classification of the headline and body discrepancies.