Despite the continuous advancement of science and technology, fire accidents continue to occur without decreasing over time, so there is a constant need for a system that can accurately detect fires at an early stage. However, because most existing fire detection systems detect fire in the early stage of combustion when smoke is generated, rapid fire prevention actions may be delayed. Therefore we propose an early fire detection system that can perform early fire detection at a reasonable cost using LSTM, a deep learning model based on multi-gas sensors with high selectivity in the early stage of decomposition rather than the smoke generation stage. This system combines multiple gas sensors to achieve faster detection speeds than traditional sensors. In addition, through window sliding techniques and model light-weighting, the false alarm rate is low while maintaining the same high accuracy as existing deep learning. This shows that the proposed fire early detection system is a meaningful research in the disaster and engineering fields.
False data injection attacks have recently been introduced as one of important issues related to cyber-attacks on electric power grids. These attacks aim to compromise the readings of multiple power meters in order to mislead the operation and control centers. Recent studies have shown that if a malicious attacker has complete knowledge of the power grid topology and branch admittances, s/he can adjust the false data injection attack such that the attack remains undetected and successfully passes the bad data detection tests that are used in power system state estimation. In this paper, we investigate that a practical false data injection attack is essentially a cyber-attack with uncertain information due to the attackers lack of knowledge with respect to the power grid parameters because the attacker has limited physical access to electric facilities and limited resources to compromise meters. We mathematically formulated a method of identifying the most vulnerable locations to false data injection attack. Furthermore, we suggest minimum topology changes or phasor measurement units (PMUs) installation in the given power grids for mitigating such attacks and indicate a new security metrics that can compare different power grid topologies. The proposed metrics for performance is verified in standard IEEE 30-bus system. We show that the robustness of grids can be improved dramatically with minimum topology changes and low cost.
Kim, Jae-Kwang;Kim, Ka-Eul;Ko, Kwang-Sun;Kang, Yong-Hyeog;Eom, Young-Ik
Annual Conference of KIPS
/
2005.05a
/
pp.1185-1188
/
2005
비정상 행위에 대한 true/false 방식의 공격 탐지 및 대응방법은 높은 오탐지율(false-positive)을 나타내기 때문에 이를 대체할 새로운 공격 탐지방법과 공격 대응방법이 연구되고 있다. 대표적인 연구로는 트래픽 제어 기술을 이용한 단계적 대응방법으로, 이 기술은 비정상 트래픽에 대해 단계적으로 대응함으로써 공격의 오탐지로 인하여 정상 서비스를 이용하는 트래픽이 차단되지 않도록 하는 기술이다. 비정상 트래픽 중 포트스캔 공격은 네트워크 기반 공격을 위해 공격대상 호스트의 서비스 포트를 찾아내는 공격으로 이 공격을 탐지하기 위해서는 일정 시간동안 특정 호스트의 특정 포트에 보내지는 패킷 수를 모니터링 하여 임계치와 비교하는 방식의 true/false 방식의 공격 탐지방법이 주로 사용되었다. 비정상 트래픽 제어 프레임워크(Abnormal Traffic Control Framework)는 true/false 방식의 공격 탐지방법을 이용하여 공격이 탐지되었을 때, 처음에는 트래픽 제어로 대응하고 같은 공격이 재차 탐지되었을때, 차단하여 기존의 true-false 방식의 공격 탐지 및 대응방법이 가지는 높은 오탐지율을 낮춘다. 하지만 포트스캔 공격의 특성상, 공격이 탐지된 후 바로 차단하지 못하였을 경우, 이미 공격자가 원하는 모든 정보를 유출하게 되는 문제가 있다. 본 논문에서는 기존의 True/False 방식의 포트스캔 공격 탐지방법에 퍼지 로직 개념을 추가하여 공격 탐지의 정확성을 높이고 기존의 탐지방법을 이용하였을 때보다 신속한 트래픽 제어 및 차단을 할 수 있는 방법을 제안한다.
The possibility of ship detection monitoring at operational level using KOMPSAT-5 Synthetic Aperture Radar (SAR) and Automatic Identification System (AIS) data is investigated. For the analysis, the KOMPSAT-5 SLC images, which are collected from the west coast of Shinjin port and the northern coast of Jeju port are used along with portable AIS data from near the coast. The ship detection algorithm based on HVAS (Human Visual Attention System) was applied, which has significant advantages in terms of detection speed and accuracy compared to the commonly used CFAR (Constant False Alarm Rate). As a result of the integrated analysis, the ship detection from KOMPSAT-5 and AIS were generally consistent except for small vessels. Some ships detected in KOMPSAT-5 but not in AIS are due to the data absence from AIS, while it is clearly visible in KOMPSAT-5. Meanwhile, SAR imagery also has some false alarms due to ship wakes, ghost effect, and DEM error (or satellite orbit error) during object masking in land. Improving the developed ship detection algorithm and collecting reliable AIS data will contribute for building wide integrated surveillance system of marine territory at operational level.
This paper introduces core techniques on ship detection and tracking based on a compact HF radar platform which is necessary to establish a wide-area surveillance network. Currently, most HF radar sites are primarily optimized for observing sea surface radial velocities and bearings. Therefore, many ship detection systems are vulnerable to error sources such as environmental noise and clutter when they are applied to these practical surface current observation purpose systems. In addition, due to Korea's geographical features, only compact HF radars which generates non-uniform antenna response and has no information on target information are applicable. The ship detection and tracking techniques discussed in this paper considers these practical conditions and were evaluated by real data collected from the Yellow Sea, Korea. The proposed method is composed of two parts. In the first part, ship detection, a constant false alarm rate based detector was applied and was enhanced by a PCA subspace decomposition method which reduces noise. To merge multiple detections originated from a single target due to the Doppler effect during long CPIs, a clustering method was applied. Finally, data association framework eliminates false detections by considering ship maneuvering over time. According to evaluation results, it is claimed that the proposed method produces satisfactory results within certain ranges.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.30
no.5
/
pp.418-426
/
2019
Recently, many studies on vital sign detection using a radar sensor related to Internet of Things(IoT) smart home systems have been conducted. Because vital signs such as respiration and cardiac rates generally cause micro-motions in the chest or back, the phase of the received echo signal from a target fluctuates according to the micro-motion. Therefore, vital signs are usually detected via spectral analysis of the phase. However, the probability of false alarms in cardiac rate detection increases as a result of various problems in the measurement environment, such as very weak phase fluctuations caused by the cardiac rate. Therefore, this study analyzes the difficulties of vital sign detection and proposes an efficient vital sign detection algorithm consisting of four main stages: 1) phase decomposition, 2) phase differentiation and filtering, 3) vital sign detection, and 4) reduction of the probability of false alarm. Experimental results using impulse-radio ultra-wideband radar show that the proposed algorithm is very efficient in terms of computation and accuracy.
Lim, Kil-Taek;Kang, Hyunwoo;Han, Byung-Gil;Lee, Jong Taek
IEMEK Journal of Embedded Systems and Applications
/
v.9
no.5
/
pp.261-268
/
2014
Face detection is essential to the full automation of face image processing application system such as face recognition, facial expression recognition, age estimation and gender identification. It is found that local image features which includes Haar-like, LBP, and MCT and the Adaboost algorithm for classifier combination are very effective for real time face detection. In this paper, we present a face detection method using local pixel direction code(PDC) feature and lookup table classifiers. The proposed PDC feature is much more effective to dectect the faces than the existing local binary structural features such as MCT and LBP. We found that our method's classification rate as well as detection rate under equal false positive rate are higher than conventional one.
The wavelet packet transform has been applied for QRS detection with squaring, window integration, and impulse filter techniques to cut down the false detection of QRS complex. This real time QRS detection has been performed on Simulink and Matlab. The correct QRS detection rates have reached to 99.75% in the experiment with 15 sets of ECG data from European ST-T database which are kept in Physionet.
Journal of the Korea Institute of Military Science and Technology
/
v.11
no.1
/
pp.75-84
/
2008
A new automatic small target detection and tracking algorithm for the real-time IR surveillance system is presented. The automatic target detection and tracking algorithm of the real-time systems, requires low complexity and robust tracking performance in the cluttered environment. Linear-array and parallel-scan IR systems usually suffer from severe scan noise caused by the detector non-uniformity. After the spatial filtering and thresholding, this scan noise still remains as high amplitude clutter which degrades the target detection rate and tracking performance. In this paper, we propose a new feature which consists of area and validity information of a measurement. By adopting this feature to the measurements selection and track confirmation, we can increase the target detection rate and reduce both the track loss rate and false track rate. From the experimental results, we can validate the feasibility of the proposed method in the noisy IR images.
Watermark detection plays a crucial role in multimedia copyright protection and has traditionally been tackled using correlation-based algorithms. However, correlation-based detection is not actually the best choice, as it does not utilize the distributional characteristics of the image being marked. Accordingly, an efficient watermark detection scheme for DWT coefficients is proposed as optimal for non-additive schemes. Based on the statistical decision theory, the proposed method is derived according to Bayes' decision theory, the Neyman-Pearson criterion, and the distribution of the DWT coefficients, thereby minimizing the missed detection probability subject to a given false alarm probability. The proposed method was tested in the context of robustness, and the results confirmed the superiority of the proposed technique over conventional correlation-based detection method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.