• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.033 seconds

Double-Dwell Hybrid Acquisition in DS-UWB System

  • Wang YuPeng;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7A
    • /
    • pp.696-701
    • /
    • 2006
  • In this paper, we analyze the performance of double-dwell hybrid initial acquisition in DS-UWB system via detection, miss, false alarm probabilities and mean acquisition time. In the analysis, we consider the effect of the acquisition sequence, and deployment scenario of the abundant multipath components over the small coverage of the piconet in DS-UWB system. Based on the simulation, we obtain various performance on the mean acquisition time by varying the parameters, such as the total number of hypotheses to be searched, subgroup size, and dwell time. Then, we suggest the optimum parameter set for the initial acquisition in DS-UWB system.

A Study on the PN code Acquisition for DS/CDMA System over Phas-Error (위상에러를 고려한 DS/CDMA시스템의 PN 부호 획득에 관한 연구)

  • 정남모
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.3
    • /
    • pp.128-134
    • /
    • 2002
  • In this paper, the performance on the PN code acquisition of DS/CDMA system was analyzed using the Nakagami-m probability density function considered fading environment. The equations on detection probability, $P_D$ and false alarm probability, $P_{FA}$, decision variables affecting the PN code acquisition time were derived and proved using simulation in order to analyze the performance. In conclusion, It was necessary increasing the gain of PLL for correcting phase errors and improving the acquisition performance of PN code in apply to the rake receiver.

  • PDF

Development of a Model-Based Motor Fault Detection System Using Vibration Signal (진동 신호 이용 모델 기반 모터 결함 검출 시스템 개발)

  • ;A.G. Parlos
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.874-882
    • /
    • 2003
  • The condition assessment of engineering systems has increased in importance because the manpower needed to operate and supervise various plants has been reduced. Especially, induction motors are at the core of most engineering processes, and there is an indispensable need to monitor their health and performance. So detection and diagnosis of motor faults is a base to improve efficiency of the industrial plant. In this paper, a model-based fault detection system is developed for induction motors, using steady state vibration signals. Early various fault detection systems using vibration signals are a trivial method and those methods are prone to have missed fault or false alarms. The suggested motor fault detection system was developed using a model-based reference value. The stationary signal had been extracted from the non-stationary signal using a data segmentation method. The signal processing method applied in this research is FFT. A reference model with spectra signal is developed and then the residuals of the vibration signal are generated. The ratio of RMS values of vibration residuals is proposed as a fault indicator for detecting faults. The developed fault detection system is tested on 800 hp motor and it is shown to be effective for detecting faults in the air-gap eccentricities and broken rotor bars. The suggested system is shown to be effective for reducing missed faults and false alarms. Moreover, the suggested system has advantages in the automation of fault detection algorithms in a random signal system, and the reference model is not complicated.

A Design of SWAD-KNH Scheme for Sensor Network Security (센서 네트워크 보안을 위한 SWAD-KNH 기법 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1462-1470
    • /
    • 2013
  • This paper proposes an SWAD-KNH(Sybil & Wormhole Attack Detection using Key, Neighbor list and Hop count) technique which consists of an SWAD(Sybil & Wormhole Attack Detection) module detecting an Worm attack and a KGDC(Key Generation and Distribution based on Cluster) module generating and an sense node key and a Group key by the cluster and distributing them. The KGDC module generates a group key and an sense node key by using an ECDH algorithm, a hash function, and a key-chain technique and distributes them safely. An SWAD module strengthens the detection of an Sybil attack by accomplishing 2-step key acknowledgement procedure and detects a Wormhole attack by using the number of the common neighbor nodes and hop counts of an source and destination node. As the result of the SWAD-KNH technique shows an Sybil attack detection rate is 91.2% and its average FPR 3.82%, a Wormhole attack detection rate is 90%, and its average FPR 4.64%, Sybil and wormhole attack detection rate and its reliability are improved.

A Novel Network Anomaly Detection Method based on Data Balancing and Recursive Feature Addition

  • Liu, Xinqian;Ren, Jiadong;He, Haitao;Wang, Qian;Sun, Shengting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3093-3115
    • /
    • 2020
  • Network anomaly detection system plays an essential role in detecting network anomaly and ensuring network security. Anomaly detection system based machine learning has become an increasingly popular solution. However, due to the unbalance and high-dimension characteristics of network traffic, the existing methods unable to achieve the excellent performance of high accuracy and low false alarm rate. To address this problem, a new network anomaly detection method based on data balancing and recursive feature addition is proposed. Firstly, data balancing algorithm based on improved KNN outlier detection is designed to select part respective data on each category. Combination optimization about parameters of improved KNN outlier detection is implemented by genetic algorithm. Next, recursive feature addition algorithm based on correlation analysis is proposed to select effective features, in which a cross contingency test is utilized to analyze correlation and obtain a features subset with a strong correlation. Then, random forests model is as the classification model to detection anomaly. Finally, the proposed algorithm is evaluated on benchmark datasets KDD Cup 1999 and UNSW_NB15. The result illustrates the proposed strategies enhance accuracy and recall, and decrease the false alarm rate. Compared with other algorithms, this algorithm still achieves significant effects, especially recall in the small category.

Malicious Code Detection using the Effective Preprocessing Method Based on Native API (Native API 의 효과적인 전처리 방법을 이용한 악성 코드 탐지 방법에 관한 연구)

  • Bae, Seong-Jae;Cho, Jae-Ik;Shon, Tae-Shik;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.785-796
    • /
    • 2012
  • In this paper, we propose an effective Behavior-based detection technique using the frequency of system calls to detect malicious code, when the number of training data is fewer than the number of properties on system calls. In this study, we collect the Native APIs which are Windows kernel data generated by running program code. Then we adopt the normalized freqeuncy of Native APIs as the basic properties. In addition, the basic properties are transformed to new properties by GLDA(Generalized Linear Discriminant Analysis) that is an effective method to discriminate between malicious code and normal code, although the number of training data is fewer than the number of properties. To detect the malicious code, kNN(k-Nearest Neighbor) classification, one of the bayesian classification technique, was used in this paper. We compared the proposed detection method with the other methods on collected Native APIs to verify efficiency of proposed method. It is presented that proposed detection method has a lower false positive rate than other methods on the threshold value when detection rate is 100%.

Research on damage detection and assessment of civil engineering structures based on DeepLabV3+ deep learning model

  • Chengyan Song
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.443-457
    • /
    • 2024
  • At present, the traditional concrete surface inspection methods based on artificial vision have the problems of high cost and insecurity, while the computer vision methods rely on artificial selection features in the case of sensitive environmental changes and difficult promotion. In order to solve these problems, this paper introduces deep learning technology in the field of computer vision to achieve automatic feature extraction of structural damage, with excellent detection speed and strong generalization ability. The main contents of this study are as follows: (1) A method based on DeepLabV3+ convolutional neural network model is proposed for surface detection of post-earthquake structural damage, including surface damage such as concrete cracks, spaling and exposed steel bars. The key semantic information is extracted by different backbone networks, and the data sets containing various surface damage are trained, tested and evaluated. The intersection ratios of 54.4%, 44.2%, and 89.9% in the test set demonstrate the network's capability to accurately identify different types of structural surface damages in pixel-level segmentation, highlighting its effectiveness in varied testing scenarios. (2) A semantic segmentation model based on DeepLabV3+ convolutional neural network is proposed for the detection and evaluation of post-earthquake structural components. Using a dataset that includes building structural components and their damage degrees for training, testing, and evaluation, semantic segmentation detection accuracies were recorded at 98.5% and 56.9%. To provide a comprehensive assessment that considers both false positives and false negatives, the Mean Intersection over Union (Mean IoU) was employed as the primary evaluation metric. This choice ensures that the network's performance in detecting and evaluating pixel-level damage in post-earthquake structural components is evaluated uniformly across all experiments. By incorporating deep learning technology, this study not only offers an innovative solution for accurately identifying post-earthquake damage in civil engineering structures but also contributes significantly to empirical research in automated detection and evaluation within the field of structural health monitoring.

Reducing False Alarm and Shortening Worm Detection Time in Virus Throttling (Virus Throttling의 웜 탐지오판 감소 및 탐지시간 단축)

  • Shim Jae-Hong;Kim Jang-bok;Choi Hyung-Hee;Jung Gi-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.6 s.102
    • /
    • pp.847-854
    • /
    • 2005
  • Since the propagation speed of the Internet worms is quite fast, worm detection in early propagation stage is very important for reducing the damage. Virus throttling technique, one of many early worm detection techniques, detects the Internet worm propagation by limiting the connection requests within a certain ratio.[6, 7] The typical throttling technique increases the possibility of false detection by treating destination IP addresses independently in their delay queue managements. In addition, it uses a simple decision strategy that determines a worn intrusion if the delay queue is overflown. This paper proposes a two dimensional delay queue management technique in which the sessions with the same destination IP are linked and thus a IP is not stored more than once. The virus throttling technique with the proposed delay queue management can reduce the possibility of false worm detection, compared with the typical throttling since the proposed technique never counts the number of a IP more than once when it chicks the length of delay queue. Moreover, this paper proposes a worm detection algorithm based on weighted average queue length for reducing worm detection time and the number of worm packets, without increasing the length of delay queue. Through deep experiments, it is verified that the proposed technique taking account of the length of past delay queue as well as current delay queue forecasts the worn propagation earlier than the typical iuぉ throttling techniques do.

A Comparative Study on the Performance of SVM and an Artificial Neural Network in Intrusion Detection (SVM과 인공 신경망을 이용한 침입탐지 효과 비교 연구)

  • Jo, Seongrae;Sung, Haengnam;Ahn, Byung-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.703-711
    • /
    • 2016
  • IDS (Intrusion Detection System) is used to detect network attacks through network data analysis. The system requires a high accuracy and detection rate, and low false alarm rate. In addition, the system uses a range of techniques, such as expert system, data mining, and state transition analysis to analyze the network data. The purpose of this study was to compare the performance of two data mining methods for detecting network attacks. They are Support Vector Machine (SVM) and a neural network called Forward Additive Neural Network (FANN). The well-known KDD Cup 99 training and test data set were used to compare the performance of the two algorithms. The accuracy, detection rate, and false alarm rate were calculated. The FANN showed a slightly higher false alarm rate than the SVM, but showed a much higher accuracy and detection rate than the SVM. Considering that treating a real attack as a normal message is much riskier than treating a normal message as an attack, it is concluded that the FANN is more effective in intrusion detection than the SVM.

Anomaly detection and attack type classification mechanism using Extra Tree and ANN (Extra Tree와 ANN을 활용한 이상 탐지 및 공격 유형 분류 메커니즘)

  • Kim, Min-Gyu;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.79-85
    • /
    • 2022
  • Anomaly detection is a method to detect and block abnormal data flows in general users' data sets. The previously known method is a method of detecting and defending an attack based on a signature using the signature of an already known attack. This has the advantage of a low false positive rate, but the problem is that it is very vulnerable to a zero-day vulnerability attack or a modified attack. However, in the case of anomaly detection, there is a disadvantage that the false positive rate is high, but it has the advantage of being able to identify, detect, and block zero-day vulnerability attacks or modified attacks, so related studies are being actively conducted. In this study, we want to deal with these anomaly detection mechanisms, and we propose a new mechanism that performs both anomaly detection and classification while supplementing the high false positive rate mentioned above. In this study, the experiment was conducted with five configurations considering the characteristics of various algorithms. As a result, the model showing the best accuracy was proposed as the result of this study. After detecting an attack by applying the Extra Tree and Three-layer ANN at the same time, the attack type is classified using the Extra Tree for the classified attack data. In this study, verification was performed on the NSL-KDD data set, and the accuracy was 99.8%, 99.1%, 98.9%, 98.7%, and 97.9% for Normal, Dos, Probe, U2R, and R2L, respectively. This configuration showed superior performance compared to other models.