• Title/Summary/Keyword: Falling Film

Search Result 109, Processing Time 0.025 seconds

A Numerical Analysis of cleat and Mass Transfer on the Dehumidifier of Liquid Desiccant Cooling System (액체 건조제 냉각장치의 제습기에서 열 및 물질전달 수치해석)

  • Go, Gwang-Ho;O, Myeong-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1756-1765
    • /
    • 2001
  • The heat and mass transfer process between the falling liquid desiccant(TEG) film and the air in counter flow at the dehumidifier of desiccant cooling system were investigated. The governing equations with appropriate boundary and interfacial conditions describing the physical problems were solved by numerical analysis. As a result, the effects of the design parameters and the outside air conditions on the rates of dehumidification and sensible cooling were discussed. The results of the dehumidification and sensible cooling rates were compared with those of the cross flow at the same conditions.

A Review of Heat and Mass Transfer Analysis for Absorption Process

  • Kim, Jin-Kyeong;Kang, Yong-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.131-137
    • /
    • 2006
  • The absorber in which heat and mass transfer phenomena occur simultaneously is one of the most critical components in the absorption system. It has the most significant influence on the performance and the size of the absorption system. During the absorption process, heat and mass transfer resistances exist in both liquid and vapor regions, so that the heat transfer mode should be carefully selected to reduce them. The objective of this paper is to review the previous papers analysing mathematical models of simultaneous heat and mass transfer phenomena during the absorption process. The most conventional working fluids ($H_2O$LiBr and $NH_3/H_2O$) are considered and the most common absorption modes (falling film and bubble mode) are dealt with in this review.

Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (I) (수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향)

  • Kim, Byeong-Ju;Lee, Chan-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.489-498
    • /
    • 1998
  • Among the heat/mass exchange units composing an absorption system, the absorber, where the refrigerant vapor is absorbed into the liquid solution is the one least understood. In the present study, the effects of non-absorbable gas on the absorption process of aqueous lithium bromide solution falling film inside a vertical tube were experimentally investigated. In the range of film Reynolds number of 30 ~ 195, heat and mass transfer characteristics were investigated as a function of non-absorbable gas volumetric concentration, 0.2 ~ 20%. An increase of non-absorbable gas volumetric concentration degraded the mass transfer rate dramatically in the absorption process. The reduction of mass transfer rate was significant for the addition of small amount of non-absorbable gas to the pure vapor. At film Reynolds number of 130, an increase of non-absorbable gas concentration from 0.2 to 6.0% resulted in the decrease of mass transfer rate by 36% and 20% of non-absorbable gas by 59%. However the decrease of film Nusselt number with the increase of volumetric concentration of non absorbable gas was relatively smaller than the decrease of Sherwood number. Critical film Reynolds number was identified to exist for the maximum heat and mass transfer regardless of the volumetric concentration of non-absorbable gases.

Effects of interfacial shear stress on laminar-wavy film flow (층류-파동 액막 유동에 대한 계면 전단응력의 영향)

  • Kim, Byeong-Ju;Jeong, Eun-Su;Kim, Jeong-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.992-1000
    • /
    • 1998
  • In the present study the behavior of laminar-wavy film flowing down a vertical plate was studied analytically. The effects of film Reynolds number and interfacial shear stress on the mean film thickness, wave amplitude, wave length, and wave celerity were analysed. The anayltical results on the periodic-wave falling film showed good agreements with experimental data for Re < 100. As the film Reynolds number increased, mean film thickness, wave amplitude, and wave celerity increased, but wave length decreased. Depending on the direction of interfacial shear stress, the shape of wavy interface was disturbed significantly, especially for the intermediate-wave. As the interfacial shear stress increased, for the periodic-wave film, wave amplitude and wave celerity increased, but mean film thickness and wave length decreased.

Design of air-cooled waste heat removal system with string type direct contact heat exchanger and investigation of oil film instability

  • Moon, Jangsik;Jeong, Yong Hoon;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.734-741
    • /
    • 2020
  • A new air-cooled waste heat removal system with a direct contact heat exchanger was designed for SMRs requiring 200 MW of waste heat removal. Conventional air-cooled systems use fin structure causing high thermal resistance; therefore, a large cooling tower is required. The new design replaces the fin structure with a vertical string type direct contact heat exchanger which has the most effective performance among tested heat exchangers in a previous study. The design results showed that the new system requires a cooling tower 50% smaller than that of the conventional system. However, droplet formation on a falling film along a string caused by Rayleigh-Plateau instability decreases heat removal performance of the new system. Analysis of Rayleigh-Plateau instability considering drag force on the falling film surface was developed. The analysis results showed that the instability can be prevented by providing thick string. The instability is prevented when the string radius exceeds the capillary length of liquid by a factor of 0.257 under stagnant air and 0.260 under 5 m/s air velocity.

An Improved Heat Transfer Prediction Model for Turbulent Falling Liquid Films with or Without Interfacial Shear (계면 전단응력이 있을 때와 없을 때 하강하는 난류액막에 대한 개선된 열전달 예측 모델)

  • Park, Seok-Jeong;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.189-202
    • /
    • 1995
  • An improved method is presented for the prediction of heat transfer coefficients in turbulent fall-ing liquid films with or without interfacial shear for both heating or condensation. A modified Mudawwar and El-Masri's semi-empirical turbulence model, particularly to extend its use for the turbulent falling film with high interfacial shear, is used to replace the eddy viscosity model incorporated in the unified approach unposed by Yih and Liu. The liquid film thickness and asymptotic heat transfer coefficients against the film Reynolds number for wide range of interfacial shear predicted by both present and existing methods are compared with experimental data. The results show that in general, predictions of the modified model agee more closely with experimental data than that of existing models.

  • PDF

Study on the Piezoelectric Direct Effect of PVDF Film (PVDF 필름의 압전정효과에 관한 연구)

  • 이용국;한득영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.786-790
    • /
    • 2000
  • This paper is concerned on the theoretical and experimental approaches of direct piezoelectric effect in the PVDF film. When a cantilever structure of PVDF film is bended by the external force, electric charges are concentrated on the electrode surface of the film due to the direct piezoelectric effect, and output voltage is induced from the terminals of the film. In this paper, a symbolic equation between the external force and the output voltage was introduced. Moreover, the theoretical output voltages were compared with the experimental results by falling balls, which were agreed well each other. This results can be useful in a warning system of abnormal pulse rate and breathing, and in detecting impact force and/or mechanical energy using bending of PVDF film.

  • PDF

A Study on the Phenomena of Droplet Impact onto a Liquid Film (단일 액적의 고체 표면 액막과의 충돌 현상에 관한 연구)

  • Ko, C.S.;Yu, J.H.;Choe, N.W.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • In this paper an experimental study is presented to investigate the dynamic behavior of impacting droplet onto a liquid film. The main parameters are the droplet velocity and the thickness of the liquid film. Photographic images are presented to show the formation of crown, central jet and disintegrating droplet from the central jet. The emphasis is on presenting the time evolution of crown diameter, crown height, central jet height and the size of disintegrating droplet from the central jet. The diameter and height of crown are higher for faster droplet and thinner liquid film. On the other hand, the height of central jet are higher for faster droplet and thicker liquid film. The size of disintegrating droplet from the central jet heavily depends on the droplet velocity; Larger droplet is produced with faster falling droplets.

Bending Analysis of PVDF Piezoelectric Film (PVDF 압전필름의 굽힘에 대한 해석)

  • 이용국;소형종;유영한;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.339-342
    • /
    • 1999
  • The equation of output voltage from the PVDF was derived. When impact force applied to the PVDF films of cantilever beam and one-end fixed, other-end supported beam structure, output voltage equation induced. Experimental output voltages by falling ball agreed quite well with induced theoretical data. This PVDF film showers to be in high possibility in a warning system of abnormal pulse rate and breathing, and in detecting impact force and/or mechanical energy.

  • PDF