• Title/Summary/Keyword: Fall-of-potential method

Search Result 77, Processing Time 0.029 seconds

A cross-entropy algorithm based on Quasi-Monte Carlo estimation and its application in hull form optimization

  • Liu, Xin;Zhang, Heng;Liu, Qiang;Dong, Suzhen;Xiao, Changshi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.115-125
    • /
    • 2021
  • Simulation-based hull form optimization is a typical HEB (high-dimensional, expensive computationally, black-box) problem. Conventional optimization algorithms easily fall into the "curse of dimensionality" when dealing with HEB problems. A recently proposed Cross-Entropy (CE) optimization algorithm is an advanced stochastic optimization algorithm based on a probability model, which has the potential to deal with high-dimensional optimization problems. Currently, the CE algorithm is still in the theoretical research stage and rarely applied to actual engineering optimization. One reason is that the Monte Carlo (MC) method is used to estimate the high-dimensional integrals in parameter update, leading to a large sample size. This paper proposes an improved CE algorithm based on quasi-Monte Carlo (QMC) estimation using high-dimensional truncated Sobol subsequence, referred to as the QMC-CE algorithm. The optimization performance of the proposed algorithm is better than that of the original CE algorithm. With a set of identical control parameters, the tests on six standard test functions and a hull form optimization problem show that the proposed algorithm not only has faster convergence but can also apply to complex simulation optimization problems.

Evaluation of Daily Precipitation Estimate from Integrated MultisatellitE Retrievals for GPM (IMERG) Data over South Korea and East Asia (동아시아 및 남한 지역에서의 Integrated MultisatellitE Retrievals for GPM (IMERG) 일강수량의 지상관측 검증)

  • Lee, Juwon;Lee, Eun-Hee
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.273-289
    • /
    • 2018
  • This paper evaluates daily precipitation products from Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG), Tropical Rainfall Measuring Mission Multisatellite (TRMM) Precipitation Analysis (TMPA), and the Climate Prediction Center Morphing Method (CMORPH), validated against gauge observation over South Korea and gauge-based analysis data East Asia during one year from June 2014 to May 2015. It is found that the three products effectively capture the seasonal variation of mean precipitation with relatively good correlation from spring to fall. Among them, IMERG and TMPA show quite similar precipitation characteristics but overall underestimation is found from all precipitation products during winter compared with observation. IMERG shows reliably high performance in precipitation for all seasons, showing the most unbiased and accurate precipitation estimation. However, it is also noticed that IMERG reveals overestimated precipitation for heavier precipitation thresholds. This assessment work suggests the validity of the IMERG product for not only seasonal precipitation but also daily precipitation, which has the potential to be used as reference precipitation data.

Evaluation of the Accuracy of Grounding Impedance Measurement of Grounding Grid (접지그리드의 접지임피던스 측정의 정확도 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Jeong, Dong-Cheol;Kim, Dong-Seong;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • Recently, the common grounding systems are adapted in most large structures. Since the ground resistance is insufficient to evaluate the performance of grounding systems, it is needed to measure grounding impedance. Even though the methods of measuring grounding impedance of large grounding systems are presented in IEEE standard 81.2, but they have not been described in detail. In this paper, we present the accurate method of measuring grounding impedance based on the revised fall-of-potential method and measurement errors due to earth mutual resistance and ac mutual coupling depending on locating test electrodes at remote earth were examined for the 15[m]$\times$15[m] grounding grid. As a result, the measurement error due to earth mutual resistance is decreased when the distance to auxiliary electrodes increased. To get rid of measurement errors due to mutual coupling, the potential lead should be installed at a right angle to the current lead. When the angle between the potential and the current leads is an acute angle or an obtuse angle, the mutual couple voltage is positive or negative, respectively. Generally, the measurement errors due to mutual coupling with an obtuse angle route are lower than those with an acute angle route.

Effects of Racemic Ketamine on Excitable Membranes of Frog (개구리 세포막에 대한 Racemic Ketamine의 영향)

  • Lee, Jong-Hwa;Frank, George B.
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.99-108
    • /
    • 1991
  • The effect of racemic Ketamine HCl was observed on excitable membranes of sciatic nerve fibres and toe muscles from frog. Ketamine significantly depressed the amplitude of the action potential, maximum rate of rise and that of fall of action potentials of sciatic nerve by dose-dependent and time-course manner, and also it produced the inhibition of $K^+-contracture$ in toe muscle. We used two different ways of sucrose gap method to to obtain the better results from sciatic nerve. We observed and compared the effect of ketamine on sciatic nerve with naloxone, 4-AP (4-aminopyridine) and TEA (Tetraethylammonium). Naloxone significantly but not totally blocked the effect of ketamine both on nerve and on skeletal muscle. 4-AP or TEA by itself had a significant depressant effect on the action potentials on nerve by central perfusion (extracellular perfusion), but both of these drugs did not much affect the action of Ketamine on nerve. The reversibility of effect of Ketamine (10 mM) was observed both on nerve and on skeletal muscles when exposed to drug for short duration. The effects of racemic ketamine described may provide to support that one of the mechanisms of the action of Ketamine on nerve and on muscles of frog might be related to non-specifically effect on receptors within the ion channels $(K^+-channel,\;Na^+-channel\;or\;slow\;Ca^{++}\;channel)$ at higher dose which produces anesthetic effect and also it interacts specifically with one of the opioid receptors or subtype of these receptors which is sensitive to Naloxone at lower dose which produces analgesia.

  • PDF

Experimental and Numerical Study on Slamming Impact

  • Kwon, Sun Hong;Yang, Young Jun;Lee, Hee Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This paper presents the results of experimental and numerical research on the slamming phenomenon. Two experimental techniques were proposed in this study. The traditional free drop tests were carried out. However, the free drop tests done in this study using an LM guide showed excellent repeatability, unlike those of other researchers. The coefficients of variation for the drop test done in this experiment were less than 0.1. The other experimental technique proposed in this study was a novel concept that used a pneumatic cylinder. The pneumatic cylinder could accelerate the specimen over a very short distance from the free surface. As a result, high rates of repeatability were achieved. In the numerical study, the development of in-house code and utilization of commercial code were carried out. The in-house code developed was based on the boundary element method. It is a potential code. This was mostly applied to the computation of the wedge entry problem. The commercial code utilized was FLUENT. Most of the previous slamming research was done under the assumption of a constant body velocity all through the impact process, which is not realistic at all. However, the interaction of a fluid and body were taken into account by employing a user-defined function in this study. The experimental and numerical results were compared. The in-house code based on BEM showed better agreement than that of the FLUENT computation when it cames to the wedge computation. However, the FLUENT proved that it could deal with a very complex geometry while BEM could not. The proposed experimental and numerical procedures were shown to be very promising tools for dealing with slamming problems.

Myth of 61.8% rule and the practical application notices (접지저항 측정의 61.8%법칙 적용의 맹점과 현실적 접근 방법)

  • Lee, Sang-Mu;Cho, Pyung-Dong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.259-262
    • /
    • 2005
  • Ground resistance measurement is an elementary technique for the evaluation of grounding system. There are main environmental factors to consider for correct measurement but the problem is that it is practically most cases to measure ground resistance unable to know the factors. This paper presents a methodology toward true value of resistance in the unknown circumstances, utilizing the defined term 'variation rate' of potential difference curve appearing in the distance to a current probe as in the three point fall-of-potential method which comprises the characteristics of environmental factors. This methodology is a induced result from the previous demostrated studies.

  • PDF

Optimal inspection frequency to mitigate the risk of building system failure

  • Au-Yong, Cheong Peng;Ali, Azlan Shah;Ahmad, Faizah;Chua, Shirley Jin Lin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.347-352
    • /
    • 2017
  • The poor maintenance practice increases the possibility of system failure. Subsequently, the consequences of failure fall on the aspects of output, safety and healthy, environmental integrity, system quality, and customer satisfaction. Conditionbased maintenance is seen as a potential strategy to improve performance. Whereby, the key success factor of this maintenance strategy is identified as the system inspection. This study aims to investigate the association between system breakdown rate and frequency of inspection. A mixed method approach is implemented by distributing questionnaire and interviewing for data collection. Subsequently, descriptive analysis, correlation analysis and regression are adopted to analyse the collected data from 100 respondents and the results are validated with interview data of 10 interviewees. The research result establishes significant relationship between the system breakdown rate and the frequency of inspection. Additionally, the result of regression analysis confirms that the frequency of inspection is the significant predictor of system breakdown rate. Planning of accurate inspection frequency is crucial to secure the system performance. Hence, the research signifies the importance to carry out regular inspection towards the building systems and components. As a recommendation, the maintenance personnel should assess the risk criticality of the building systems. Then, continuously monitor the condition of critical building systems; regularly inspect the condition of non-critical building systems and randomly inspect all of them.

The effect of fiber reinforcement on behavior of Concrete-Filled Steel Tube Section (CFST) under transverse impact: Experimentally and numerically

  • Yaman, Zeynep
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.173-189
    • /
    • 2022
  • This study presents an experimental and numerically study about the effects of fiber reinforcement ratio on the behavior of concrete-filled steel tubes (CFST) under dynamic impact loading. In literature have examined the behavior of GFRP and FRP wrapped strengthened CFST elements impact loads. However, since the direction of potential impact force isn't too exact, there is always the probability of not being matched the impact force of the area where the reinforced. Therefore, instead of the fiber textile wrapping method which strengthens only a particular area of CFST element, we used fiber-added concrete-filled elements which allow strengthening the whole element. Thus, the effect of fiber-addition in concrete on the behavior of CFST elements under impact loads was examined. To do so, six simply supported CFST beams were constructed with none fiber, 2% fiber and 10% fiber reinforcement ratio on the concrete part of the CFST beam. CFST beams were examined under two different impact loads (75 kg and 225 kg). The impactors hit the beam from a 2000 mm free fall during the experimental study. Numerical models of the specimens were created using ABAQUS finite element software and validated with experimental data. The obtained results such as; mid-span displacement, acceleration, failure modes and energies from experimental and numerical studies were compared and discussed. Furthermore, the Von Misses stress distribution of the CFST beams with different ratio of fiber reinforcements were investigated numerically. To sum up, there is an optimum amount limit of the fiber reinforcement on CFST beams. Up to this limit, the fiber reinforcement increases the structural performances of the beam, beyond that limit the fiber reinforcement decreases the performances of the CFST beam under transverse impact loadings.

STRAW HARVESTER FOR ANIMAL FEED

  • Kim, Sang-Hun;Shin, Beom-Soo;Nam, Sang-Il
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.967-976
    • /
    • 1996
  • Straw and other fibrous by-products are inevitably produced during cereal production and have traditionally been used for many purposes including feeding animals . The potential of these by -products as a feed resource for ruminants is being increasingly appreciated (FAO , 1977). In the future, the amount of cereals fed to farm animals will have to be reduced and livestock will have to rely more on by-products such as straw. The method of animal production can be classified by the major portion of feed. One is animal forage and the other is grains. In Korea , livestock farmers normally depend more than 70% upon grains for the feed stuff. The livestock production system causes the unbalance of nutrition, and results in low productivity of animal farming. In many livestock farms in Korea the rice straw is using as a major forage and the amount of rice straw fed takes 46% of total amount of required forages. Especially the rice straw is mainly using during spring, fall and winte season. However, there are still lots of problems to solved such as harvesting cost, transportation between rice farm ad livestock farm, and quality loss during drying and storage . Therefore the mechanization of straw harvesting is urgently needed to use the renewable agricultural by-products and to overcome the shortage of animal forage. The objective of this research is to develope a straw harvester with new concept which can solve the problems of the quality loss and the labor cost during drying in a field, collecting , and storage. The developed straw harvester is self-propelled machine rebuilt by rice combine and equipped with the pick-up device, the macerater and the mat-forming device.

  • PDF

Cushioning Efficiency Evaluation by using the New Determination of Cushioning Curve in Cushioning Packaging Material Design for Agricultural Products (농산물 포장용 지류완충재의 새로운 완충곡선 구현을 통한 완충성능 평가)

  • Jung, Hyun Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • From the time the product is manufactured until it is carried and ultimately used, the product is subjected to some form of handling and transportations. During this process, the product can be subjected to many potential hazards. One of them is the damage caused by shocks. In order to design a product-package system to protect the product, the peak acceleration or G force to the product that causes damage needs to be determined. When a corrugated fiberboard box loaded with products is dropped onto the ground, part of the energy acquired due to the action of the gravitational acceleration during the free fall is dissipated in the product and the package in various ways. The shock absorbing characteristics of the packaging cushion materials are presented as a family of cushion curves in which curves showing peak accelerations during impacts for a range of static loads are shown for several drop heights. The new method for determining the shock absorbing characteristics of cushioning materials for protective packaging has been described and demonstrated. It has been shown that cushion curves can be produced by combining the static compression and impact characteristics of the material. The dynamic factor was determined by the iterative least mean squares (ILMS) optimization technique in which the discrepancies between peak acceleration data predicted from the theoretical model and obtained from the impact tests are minimized. The approach enabled an efficient determination of cushion curves from a small number of experimental impact data.

  • PDF