DOI QR코드

DOI QR Code

Evaluation of Daily Precipitation Estimate from Integrated MultisatellitE Retrievals for GPM (IMERG) Data over South Korea and East Asia

동아시아 및 남한 지역에서의 Integrated MultisatellitE Retrievals for GPM (IMERG) 일강수량의 지상관측 검증

  • Lee, Juwon (Korea Institute of Atmospheric Prediction Systems) ;
  • Lee, Eun-Hee (Korea Institute of Atmospheric Prediction Systems)
  • 이주원 ((재)한국형수치예보모델개발사업단) ;
  • 이은희 ((재)한국형수치예보모델개발사업단)
  • Received : 2018.04.14
  • Accepted : 2018.06.25
  • Published : 2018.09.30

Abstract

This paper evaluates daily precipitation products from Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG), Tropical Rainfall Measuring Mission Multisatellite (TRMM) Precipitation Analysis (TMPA), and the Climate Prediction Center Morphing Method (CMORPH), validated against gauge observation over South Korea and gauge-based analysis data East Asia during one year from June 2014 to May 2015. It is found that the three products effectively capture the seasonal variation of mean precipitation with relatively good correlation from spring to fall. Among them, IMERG and TMPA show quite similar precipitation characteristics but overall underestimation is found from all precipitation products during winter compared with observation. IMERG shows reliably high performance in precipitation for all seasons, showing the most unbiased and accurate precipitation estimation. However, it is also noticed that IMERG reveals overestimated precipitation for heavier precipitation thresholds. This assessment work suggests the validity of the IMERG product for not only seasonal precipitation but also daily precipitation, which has the potential to be used as reference precipitation data.

Keywords

References

  1. Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M. Goodman, 2001: Intercomparison of global precipitation products: The third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82, 1377-1396. https://doi.org/10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2
  2. Aonashi, K., and Coauthors, 2009: GSMaP passive, microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteorol. Soc. Japan, 87A, 119-136. https://doi.org/10.2151/jmsj.87A.119
  3. Arkin, P. A., and P. P. Xie, 1994: The Global Precipitation Climatology Project: First Algorithm Intercomparison Project. Bull. Amer. Meteor. Soc., 75, 401-419. https://doi.org/10.1175/1520-0477(1994)075<0401:TGPCPF>2.0.CO;2
  4. Barrett, E. C., and Coauthors, 1994: The first WetNet Precipitation Intercomparison Project: Interpretation of results. Remote Sens. Rev., 11, 303-373. https://doi.org/10.1080/02757259409532268
  5. Behrangi, A., K.-L. Hsu, B. Imam, S. Sorooshian, G. J. Huffman, and R. J. Kuligowski, 2009: PERSIANNMSA:A precipitation estimation method from satellite-based multispectral analysis. J. Hydrometeor., 10, 1414-1429. https://doi.org/10.1175/2009JHM1139.1
  6. Chen, V. C., and H. Ling, 2001: Time-frequency Transforms for Radar Imaging and Signal Analysis. Artech House, 234 pp.
  7. Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110.
  8. Dezfuli, A. K., C. M. Ichoku, G. J. Huffman, K. I. Mohr, J. S. Selker, N. van de Giesen, R. Hochreutener, and F. O. Annor, 2017: Validation of IMERG precipitation in Africa. J. Hydrometeor., 18, 2817-2825, doi:10.1175/JHM-D-17-0139.1.
  9. Dinku, T., P. Ceccato, E. Grover-Kopec, M. Lemma, S. J. Connor, and C. F. Ropelewski, 2007: Validation of satellite rainfall products over East Africa's complex topography. Int. J. Remote Sens., 28, 1503-1526. https://doi.org/10.1080/01431160600954688
  10. Dodge, J., and H. M. Goodman, 1994: The WetNet Project. Remote Sens. Rev., 11, 5-21. https://doi.org/10.1080/02757259409532256
  11. Duan, Z., J. Liu, Y. Tuo, G. Chiogna, and M. Disse, 2016:Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ., 573, 1536-1553, doi:10.1016/j.scitotenv.2016.08.213.
  12. Ebert, E. E., and M. J. Manton, 1998: Performance of satellite rainfall estimation algorithms during TOGA COARE. J. Atmos. Sci., 55, 1537-1557. https://doi.org/10.1175/1520-0469(1998)055<1537:POSREA>2.0.CO;2
  13. Ebert, E. E., M. J. Manton, P. A. Arkin, R. J. Allam, C. E. Holpin, and A. Gruber, 1996: Results from the GPCP algorithms intercomparison program. Bull. Amer. Meteor. Soc., 77, 2875-2887. https://doi.org/10.1175/1520-0477(1996)077<2875:RFTGAI>2.0.CO;2
  14. Fischer, R., S. Nowicki, M. Kelley, and G. A. Schmidt, 2014: A system of conservative regridding for ice-atmosphere coupling in a General Circulation Model (GCM). Geosci. Model Dev., 7, 883-907, doi:10.5194/gmd-7-883-2014.
  15. Guo, H., S. Chen, A. Bao, A. Behrangi, Y. Hong, F. Ndayisaba, J. Hu, and P. M. Stepanian, 2016: Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res., 176-177, 121-133, doi:10.1016/j.atmosres.2016.02.020.
  16. Hogan, R. J., E. J. O'Connor, and A. J. Illingworth, 2009:Verification of cloud-fraction forecasts. Quart. J. Roy. Meteor. Soc., 135, 1494-1511. https://doi.org/10.1002/qj.481
  17. Hou, A. Y., R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701-722, doi:10.1175/BAMS-D-13-00164.1.
  18. Huffman, G. J., and C. Klepp, 2011: Fifth workshop of the international precipitation working group. Bull. Amer. Meteor. Soc., 92, ES54-ES57, doi:10.1175/BAMS-D-11-00030.1.
  19. Huffman, G. J., R. F. Adler, B. Rudolf, U. Schneider, and P. R. Keehn, 1995: Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Climate, 8, 1284-1295. https://doi.org/10.1175/1520-0442(1995)008<1284:GPEBOA>2.0.CO;2
  20. Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hone, E. F. Stocker, and D. B. Wolff, 2007: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38-55. https://doi.org/10.1175/JHM560.1
  21. Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, and E. J. Nelkin, 2010: The TRMM Multi-Satellite precipitation analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer, 3-22.
  22. Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Ksu, R. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015a: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). ATBD Version 4.5, 26 pp.
  23. Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015b: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA Doc., 54 pp.
  24. Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015c: Day 1 IMERG final run release notes. NASA Doc., 9 pp.
  25. Jin, K. W., 2015: NASA's space-bome microwave remote sensing missions of GPM and SMAP for a global water cycle research. Current Industrial and Technological Trends in Aerospace, 13, 96-106.
  26. Joyce, R. J., and P. Xie, 2011: Kalman filter-based CMORPH. J. Hydrometeor., 12, 1547-1563, doi:10.1175/JHM-D-11-022.1.
  27. Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004:CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487-503. https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
  28. Kidd, C., P. Bauer, J. Turk, G. J. Huffman, R. Joyce, K. L. Hsu, and D. Braithwaite, 2012: Intercomparison of high-resolution precipitation products over northwest Europe. J. Hydrometeor., 13, 67-83, doi:10.1175/JHMD-11-042.1.
  29. Kim, K., J. Park, J. Paik, and M. Choi, 2017: Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos. Res., 187, 95-105, doi:10.1016/j.atmosres.2016.12.007.
  30. Koo, M.-S., S.-Y. Hong, and J. Kim, 2009: An Evaluation of the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) Data over South Korea. Asia-Pac. J. Atmos. Sci., 45, 265-282.
  31. Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 1213-1232. https://doi.org/10.1109/36.536538
  32. Liu, Z., 2016: Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeor., 17, 777-790, doi:10.1175/JHM-D-15-0068.1.
  33. Lopez, P., 2008: Comparison of OPERA precipitation radar composites to CMORPH, SYNOP and ECMWF model data. ECMWF Tech. Memo. No. 569, 22 pp.
  34. Olson, W. S., C. Kummerow, Y. Hong, and W.-K. Tao, 1999: Atmospheric latent heating distributions in the Tropics derived from satellite passive microwave radiometer measurements. J. Appl. Meteor., 38, 633-664. https://doi.org/10.1175/1520-0450(1999)038<0633:ALHDIT>2.0.CO;2
  35. Prakash, S., A. K. Mitra, D. S. Pai, and A. Aghakouchak, 2016: From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour., 88, 1-7, doi:10.1016/j.advwatres.2015.11.008.
  36. Qin, Y., Z. Chen, Y. Shen, S. Zhang, and R. Shi, 2014: Evaluation of satellite rainfall estimates over the Chinese mainland. Remote Sens., 6, 11649-11672, doi:10.3390/rs61111649.
  37. Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601-608. https://doi.org/10.1175/2008WAF2222159.1
  38. Sharifi, E., R. Steinacker, and B. Saghafian, 2016: Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: preliminary results. Remote Sens., 8, 135. https://doi.org/10.3390/rs8020135
  39. Smith, E. A., and Coauthors, 1998: Results of the WetNet PIP-2 Project. J. Atmos. Sci., 55, 1483-1536. https://doi.org/10.1175/1520-0469(1998)055<1483:ROWPP>2.0.CO;2
  40. Sohn, B. J., and Coauthors, 2005: Proposing research and development activities for utilizing the Global Precipitation Measurement (GPM). Atmosphere, 15, 47-57 (in Korean with English abstract).
  41. Sohn, B. J., H.-J. Han, and E.-K. Seo, 2010: Validation of satellite based high-resolution rainfall products over the Korean Peninsula using data from a dense rain gauge network. J. Appl. Meteor. Climatol., 49, 701-714, doi:10.1175/2009JAMC2266.1.
  42. Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 2035-2046. https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
  43. Tang, G. Q., Y. Z. Ma, D. Long, L. Z. Zhong, and Y. Hong, 2016: Evaluation of GPM Day-1 IMERG and TMPA version-7 legacy products over mainland China at multiple spatiotemporal scales. J. Hydrol., 533, 152-167, doi:10.1016/j.jhydrol.2015.12.008.
  44. Weng, F., L. Zhao, R. Ferraro, G. Poe, X. Li, and N. Grody, 2003: Advanced microwave sounding unit application of high resolution multi-satellite precipitation products and a distributed hydrological modeling for daily runoff simulation cloud and precipitation algorithm. Radio Sci., 38, 8068-8080.
  45. Xie, P., A. Yatagai, M. Chen, T. Hayasaka, Y. Fukushima, C. Liu, and S. Yang, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607-626. https://doi.org/10.1175/JHM583.1
  46. Zhao, L., and F. Weng, 2002: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit, J. Appl. Meteorol., 41, 384-395. https://doi.org/10.1175/1520-0450(2002)041<0384:ROICPU>2.0.CO;2