• 제목/요약/키워드: Failure life

검색결과 1,993건 처리시간 0.027초

와이블 분포를 이용한 플랩구동장치의 무고장 가속수명시험 (No-Failure Accelerated Life Test of Flap Actuating System using Weibull Distribution)

  • 조현준;이인호;김상범;박상준;양명석
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.51-58
    • /
    • 2016
  • In this paper, we present some results on No-failure accelerated life test of aerial vehicle for reliability demonstration. The design of general accelerated life test consists of the three phases: 1) Estimating normal life test time of a single product from Weibull distribution model; 2) Determining the acceleration factor (AF) by utilizing the relation between the life of mechanical components and the applied torque; 3) Calculating the accelerated life test time, which comes from dividing the estimated normal life test time into AF. Then, we applied the calculated life test time to the real reliability test of the flap actuating system, while considering the requirement specification for mechanical components and operating environment of the actuation system. Real experimental processes and results are presented to validate the theory.

정시중단 가속수명시험에서 고장률과 가속계수의 추정 (Estimation of Failure Rate and Acceleration Factor in Accelerated Life Testing under Type-I Censoring)

  • 공명복;박일광
    • 대한산업공학회지
    • /
    • 제29권2호
    • /
    • pp.145-149
    • /
    • 2003
  • We consider the estimation of failure rate and acceleration factor under type-I censoring without using acceleration model when testing is conducted in only one highly accelerated condition. Failure times of an item are assumed to be exponentially distributed. It is also assumed that the uncertainty about the acceleration factor, the failure time contraction ratio between accelerated condition and use condition, can be modeled by the uniform or gamma prior distribution of appropriate parameters. We respectively use Bayes and maximum likelihood approaches to estimate acceleration factor and failure rate in the use condition. An example is given to show how the method can be applied.

디칸터의 고장분석 및 성능 향상에 관한 연구 (A Study on the Failure Analysis and Performance Improvement of a Decanter)

  • 신창호;이동철;김우형;최태주;정진태
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.586-592
    • /
    • 2004
  • In this study, the failure analysis of a decanter is carried out and the methods of performance improvement are presented. The decanter is a centrifugal separator that is used to separate water and solids from municipal and industrial sludge. Therefore, the decanter should be designed to improve the dewatering of sludge. Besides high performance, the decanter should guarantee its life time under a severe using condition. For theses reasons, the failure analysis and performance improvement of the decanter are studied. It is found from this study that the failure is caused by mass unbalance, wear, clogging or crack. If these failure causes are prevented, the life time as well as the performance is expected to be improved.

몬테카를로법을 이용한 고온 내압 요소의 크리프 균열성장 파손확률 평가 (Evaluation of Creep Crack Growth Failure Probability for High Temperature Pressurized Components Using Monte Carlo Simulation)

  • 이진상;윤기봉
    • 한국안전학회지
    • /
    • 제21권1호
    • /
    • pp.28-34
    • /
    • 2006
  • A procedure of estimating failure probability is demonstrated for a pressurized pipe of CrMo steel used at $538^{\circ}C$. Probabilistic fracture mechanics were employed considering variations of pressure loading, material properties and geometry. Probability density functions of major material variables were determined by statistical analyses of implemented data obtained by previous experiments. Distributions of the major variables were reflected in Monte Carlo simulation and failure probability as a function of operating time was determined. The creep crack growth life assessed by conventional deterministic approach was shown to be conservative compared with those obtained by probabilistic one. Sensitivity analysis for each input variable was also conducted to understand the most influencing variables to the residual life analysis. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

열화 자료의 신뢰성 분석과 응용 (Reliability Analysis of Degradation Data and its Applications)

  • 정해성
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제3권2호
    • /
    • pp.93-101
    • /
    • 2003
  • Life time data analysis requires some time-to-failure data to an extent. Some life tests result in few or no failure. In such cases, it is difficult to access reliability with traditional life tests that record only time to failure. Furthermore, with short product development time, reliability tests must be conducted with severe time constraints. For some devices, it is possible to obtain degradation measurements over time, and these measurements may contain useful information about product reliability. This article describes degradation reliability analysis methods to do inferences and predictions about a failure-time distribution by using software. In addition, the possibility of extension to CBM (Condition Based Maintenance) is suggested as an example of applied degradation data analysis.

  • PDF

자연 노화된 니트로셀룰로오스의 수명에 관한 연구 (A Study of Life about Naturally Aged Nitrocellulose by Storage)

  • 김동성;진홍식
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.595-601
    • /
    • 2020
  • 10년 이상 보관된 니트로셀룰로오스 (Nitrocellulose, 니트로셀룰로오스) 재질의 화약용기 안전 검사를 진행하는 과정 중 화약이 보관되어진 용기에 균열이 발생한 것을 확인하여 고장 원인 분석 시험을 실시하였다. 고장이 발생한 데에 영향을 준 요인을 선별하기 위해 먼저 고장수목분석(Fault Tree Analysis, FTA)을 통해 고장 요인 및 원인에 대해 탐구하였으며, 보관 시 발생할 수 있는 내·외부적인 요인 및 환경에 대한 영향성을 확인한 결과 열에 의해 화학 반응이 가속화되어 발생한 화약용기의 물성 변화가 고장의 원인인 것으로 추정하였다. 이를 확인하기 위해 자연 노화된 화약용기를 이용하여 열충격시험, 양립성 시험 등의 환경시험을 수행하여 고장의 원인 분석을 수행하였으며, 가속노화시험을 통해 고장 재현 시험을 실시하였다. 이를 통해 앞선 고장수목분석 결과와 같이 열과 화약에 의해 화학 반응이 가속화되는 것을 확인할 수 있었으며, 화약용기의 물성이 변화하는 것을 확인하였다. 또한, 열 노화에 의한 수명 추정을 위해 아레니우스 모델(Arrhenius Model)을 이용하여 화약용기의 사용 수명을 추정하였다.

Deriving a Probabilistic Model for Fatigue Life Based on Physical Failure Mechanism

  • Suneung Ahn
    • 산업경영시스템학회지
    • /
    • 제24권68호
    • /
    • pp.1-7
    • /
    • 2001
  • A probabilistic model for fatigue life of a structural component is derived when the component is in a variable-amplitude loading environment. The physical mechanism which governs fatigue failure is used to model the fatigue life. Especially, the judgement of rotational symmetry in the-stress-intensity-factors results in the probability distribution for fatigue life. The probability distribution is related to the familiar truncated Gaussian distribution, which has a single parameter with a direct physical meaning.

  • PDF

유압펌프 및 모터 피스톤 조립체의 수명예측을 위한 가속실험 모델 (Accelerated Life Test Model for Life Prediction of Piston Assemblies in Hydraulic Pump and Motor)

  • 이용범;김형의;유영철;박종호
    • 유공압시스템학회논문집
    • /
    • 제2권4호
    • /
    • pp.14-22
    • /
    • 2005
  • The safety factor of hydraulic piston pumps & motors due to high pressurization, high speedization and low weight/volume realization to enhance the output density shows a tendency to decrease. Therefore more effective test methods are necessary to predict the exact life. The failure of hydraulic pumps & motors operating in high pressure and high speed mainly occurs in piston-shoe assemblies, and the major failure mode is wearout of the shoe surface. The sensitive parameters in the endurance life test are speed, pressure and temperature, and the failure production increases in proportion to the operating time. In this research, the authors propose the combined accelerated life test model using the analysis method of the combined accelerated life test results of piston-shoe assemblies by applying simultaneously high speed, high pressure and high temperature in accordance with variation of speed, pressure and temperature to reduce the life test time.

  • PDF

가속시험법을 활용한 자동차용 워터펌프 베어링의 수명특성에 관한 연구 (A Study on the Life Characteristic of an Automotive Water-pump Bearing Using the Accelerated Test Method)

  • 양희선;신정훈;박종원;성백주
    • Tribology and Lubricants
    • /
    • 제31권2호
    • /
    • pp.35-41
    • /
    • 2015
  • A water-pump located in the cooling area of a car circulates cooling water. A particular bearing element, known as a water-pump bearing, installed in the rotating part carries the entire load. The failure of this water-pump bearing has a direct impact on the failure of the automobile engine, and so securing its reliability is crucial. Several researchers have examined the design principles of the water-pump bearing, but there are no reports on the life characteristic of the bearing yet. Herein, we report the construction of test equipment to reproduce the spalling of the roller contact, which is the main failure mode of the chosen water-pump bearing. We chose the radial load as an accelerated stress factor and validated the failure mode by monitoring the surface defects. We conducted the accelerated life test after determining the accelerated stress level through a combination of finite element analysis and a preliminary test. In the life tests, we used an accelerometer to perform failure diagnosis. In the last stage of this study, we present a statistical reliability analysis. Thus, we fully estimated the shape parameter of the water-pump bearing, accelerating level on the load , and the lifetime (MTTF and B10 life) under real use conditions, and finally proposed an interval estimation value considering the uncertainty of the estimated value.

산업용 청소기 모터의 가속수명시험 (Accelerated Life Test of Industrial Cleaner Motor)

  • 엄학용;이기천;장무성;박종원;이용범
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권3호
    • /
    • pp.193-200
    • /
    • 2018
  • Purpose: In this study, the life of the motor is investigated by performing the accelerated life test with the brush wear of the industrial cleaner motor as the main failure mode. Methods: The accelerating stress factor of the accelerated life test is a voltage, which can increase the number of revolutions of the motor to accelerate the brush wear due to the friction between the brush and the commutator. Also, the accelerating stress level was determined after determining the maximum allowable level of the voltage through the preliminary test. Results: The motor failure time at each accelerating stress level was predicted by regression analysis with brush wear length as performance degradation data. The main failure mode, which is brush wear, of the motor was reproduced by this test. The shape parameter of the Weibull distribution was confirmed to be the same statistically at all accelerating stress levels by the likelihood ratio test. Conclusion: The life of the motor was investigated by performing the accelerated life test with the brush wear of the industrial cleaner motor as the main failure mode. Through the accelerating test method of the cleaner motor, various life expectancy and life expectancy of the acceleration factor are predicted.