• Title/Summary/Keyword: Failure Stress

Search Result 2,888, Processing Time 0.03 seconds

Effect of Boundary Conditions on Reliability and Cumulative Distribution Characteristics of Fatigue Failure Life in Magnesium Alloy (마그네슘합금의 피로파손수명의 누적확률분포특성과 신뢰성에 미치는 경계조건의 영향)

  • Choi, Seon-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.594-599
    • /
    • 2011
  • In this paper, the effect of the boundary conditions on the reliability and the cumulative distribution characteristics of the fatigue failure life is analyzed in a magnesium alloy AZ31. The boundary conditions are specimen thickness, stress ratio, and maximum fatigue load. The statistical data of the fatigue failure life are obtained by fatigue crack propagation tests under the detail conditions for each boundary condition. The 3-parameter Weibull distribution is used to analyze a statistical characteristics of the fatigue failure life in magnesium alloy AZ31. It is found that the statistical fatigue failure life is long in the case of a thicker specimen, a larger stress ratio, and a smaller maximum fatigue load. Under the opposite cases, the reliability on the fatigue failure life is rapidly dropped.

Simulation study on the mechanical properties and failure characteristics of rocks with double holes and fractures

  • Pan, Haiyang;Jiang, Ning;Gao, Zhiyou;Liang, Xiao;Yin, Dawei
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.93-105
    • /
    • 2022
  • With the exploitation of natural resources in China, underground resource extraction and underground space development, as well as other engineering activities are increasing, resulting in the creation of many defective rocks. In this paper, uniaxial compression tests were performed on rocks with double holes and fractures at different angles using particle flow code (PFC2D) numerical simulations and laboratory experiments. The failure behavior and mechanical properties of rock samples with holes and fractures at different angles were analyzed. The failure modes of rock with defects at different angles were identified. The fracture propagation and stress evolution characteristics of rock with fractures at different angles were determined. The results reveal that compared to intact rocks, the peak stress, elastic modulus, peak strain, initiation stress, and damage stress of fractured rocks with different fracture angles around holes are lower. As the fracture angle increases, the gap in mechanical properties between the defective rock and the intact rock gradually decreased. In the force chain diagram, the compressive stress concentration range of the combined defect of cracks and holes starts to decrease, and the model is gradually destroyed as the tensile stress range gradually increases. When the peak stress is reached, the acoustic emission energy is highest and the rock undergoes brittle damage. Through a comparative study using laboratory tests, the results of laboratory real rocks and numerical simulation experiments were verified and the macroscopic failure characteristics of the real and simulated rocks were determined to be similar. This study can help us correctly understand the mechanical properties of rocks with defects and provide theoretical guidance for practical rock engineering.

Evaluation of Piping Failure Probability of Reactor Coolant System in Kori Unit 1 Considering Stress Corrosion Cracking (응력부식균열을 고려한 고리 1호기 원자로냉각재계통의 배관 파손확률 평가)

  • Park, Jeong Soon;Choi, Young Hwan;Park, Jae Hak
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.43-49
    • /
    • 2010
  • The piping failure probability of the reactor coolant system in Kori unit 1 was evaluated considering stress corrosion cracking. The P-PIE program (Probabilistic Piping Integrity Evaluation Program) developed in this study was used in the analysis. The effect of some variables such as oxygen concentration during start up and steady state operation, and operating temperature, which are related with stress corrosion cracking, on the piping failure probabilities was investigated. The effects of leak detection capability, the size of big leak, piping loops, and reactor types on the piping failure probability were also investigated. The results show that (1) LOCA (loss of coolant accident) probability of Kori unit 1 is extremely low, (2) leak probability is sensitive to oxygen concentration during steady state operation and operating temperature, while not sensitive to the oxygen concentration during start up, and (3) the piping thickness and operating temperature play important roles in the leak probabilities of the cold leg in 4 reactor types having same inner diameter.

  • PDF

Experimental investigation on multi-parameter classification predicting degradation model for rock failure using Bayesian method

  • Wang, Chunlai;Li, Changfeng;Chen, Zeng;Liao, Zefeng;Zhao, Guangming;Shi, Feng;Yu, Weijian
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.113-120
    • /
    • 2020
  • Rock damage is the main cause of accidents in underground engineering. It is difficult to predict rock damage accurately by using only one parameter. In this study, a rock failure prediction model was established by using stress, energy, and damage. The prediction level was divided into three levels according to the ratio of the damage threshold stress to the peak stress. A classification predicting model was established, including the stress, energy, damage and AE impact rate using Bayesian method. Results show that the model is good practicability and effectiveness in predicting the degree of rock failure. On the basis of this, a multi-parameter classification predicting deterioration model of rock failure was established. The results provide a new idea for classifying and predicting rockburst.

Failure simulation of nuclear pressure vessel under LBLOCA scenarios

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Kukhee Lim;Eung-Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2859-2874
    • /
    • 2024
  • This paper presents the finite element deformation and failure simulation of a typical Korean high-power reactor vessel under a severe accident characterized by large break loss of coolant (LBLOCA) with in-vessel retention of molten corium through external reactor vessel cooling (IVR-ERVC) conditions. Temperature distributions calculated using Modular Accident Analysis Program Version 5 (MAAP5) as thermal boundary conditions were used, and ABAQUS thermal and structural analyses were performed. After full ablation, the temperature of the inner surface in the thinnest section remained high (920 ℃), but the stress remained relatively low (less than 6 MPa). At the outer surface, the stress was as high as 250 MPa; however, the resulting plastic strain was small owing to the low temperature of 200 ℃. Variations in stress, inelastic strain, and temperature with time in the thinnest section suggest that the plastic and creep strains are saturated owing to stress relaxation, resulting in low cumulative damage. Thus, the lower head of the vessel can maintain its structural integrity under LBLOCA with IVR-ERVC conditions. The sensitivity analysis of internal pressure indicates the occurrence of failure in the thinnest section at an internal pressure >9.6 MPa via local necking followed by failure due to high stresses.

Numerical modeling and prediction of adhesion failure of adhesively bonded composite T-Joint structure

  • Panda, Subhransu K;Mishra, Pradeep K;Panda, Subrata K
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.723-735
    • /
    • 2020
  • This study is reported the adhesion failure in adhesive bonded composite and specifically for the T-joint structure. Three-dimensional finite element analysis has been performed using a commercial tool and the necessary outcomes are obtained via an eight noded solid element (Solid 185-element) from the library of ANSYS. The structural analysis input has been incurred through ANSYS parametric design language (APDL) code. The normal and shear stress distributions along different layers of the joint structure have been evaluated as the final outcomes. Based on the stress distributions, failure location in the composite joint structure has been identified by using the Tsai-Wu stress failure criterion. It has been found that the failure index is maximum at the interface between flange and web part of the joint (top layer) which indicates the probable location of failure initiation. This kind of failures are considered as adhesion failure and the failure propagation is governed by strain energy release rate (SERR) of fracture mechanics. The different adhesion failure lengths are also considered at the failure location to calculate the SERR values i.e. mode I fracture (opening), mode II fracture (sliding) and mode III fracture (tearing) along the failure front. Also, virtual crack closure technique (VCCT) principle of fracture mechanics steps is used to calculate the above said SERRs. It is found that the mode I SERR is more dominating compared to other two modes of failure for the joint considered. Finally, the influences of various parametric (geometrical and material) effect on SERR of the joint structure are evaluated and discussed in details.

Effect of internal stress on cyclic fatigue failure in .06 taper ProFile (내부 응력이 .06 taper ProFile의 피로 파절에 미치는 영향)

  • Jung, Hye-Rim;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.2
    • /
    • pp.79-83
    • /
    • 2012
  • Objectives: The purpose of this study was to evaluate the relation between intentionally induced internal stress and cyclic fatigue failure of .06 taper ProFile. Materials and Methods: Length 25 mm, .06 taper ProFile (Dentsply Maillefer), and size 20, 25, 30, 35 and 40 were used in this study. To give the internal stress, the rotary NiTi files were put into the .02 taper, Endo-Training-Bloc (Dentsply Maillefer) until auto-stop by torque controlled motor. Rotary NiTi files were grouped by the number of induced internal stress and randomly distributed among one control group and three experimental groups (n = 10, Stress 0 [control], Stress 1, Stress 2 and Stress 3). For cyclic fatigue measurement, time for separation of the rotary NiTi files was recorded. The fractured surfaces were observed by field emission scanning electron microscope (FE-SEM, SU-70, Hitachi). The time for separation was statistically analyzed using two-way ANOVA and post-hoc Scheffe test at 95% level. Results: In .06 taper ProFile size 20, 25, 30, 35 and 40, there were statistically significant difference on time for separation between control group and the other groups (p < 0.05). Conclusion: In the limitation of this study, cyclic fatigue failure of .06 taper ProFile is influenced by internal stress accumulated in the files.

The Characteristics of Various Stress in Cohesionless Soil with the Rammed Aggregate Pier (짧은 쇄석다짐말뚝(RAP)이 설치된 사질토지반의 응력변화 특성)

  • Chun, Byung-Sik;Kim, Kyung-Min;Kim, Jun-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1108-1117
    • /
    • 2005
  • RAP(rammed aggregate pier) method which is intermediate foundation of deep and shallow foundation is used to improve the ground with high compaction energy. This method is widely spread around the world, but there are few examples and systemic researches for failure mechanism and bearing capacity of this method are not organized yet. In this paper, soil laboratory tests were carried out to evaluate the applicability of RAP method as the foundation of a structure. And the bearing capacity and the failure mechanism of RAP method were studied with respect to various relative densities(35%, 65%, 90%), diameters(45mm, 60mm) and lengths(20cm, 30cm, 40cm). As results, stress concentration ratio decreased as diameter of RAP was increasing or length of RAP was decreased or relative density was decreased. however these results were not always constant. because systematic interaction between relative density and diameter and length of RAP can affect stress concentration ratio, more studies on stress concentration ratio are needed throughout laboratory and field tests.

  • PDF

A failure criterion for RC members under triaxial compression

  • Koksal, Hansan Orhun
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.137-154
    • /
    • 2006
  • The reliable pushover analysis of RC structures requires a realistic prediction of moment-curvature relations, which can be obtained by utilizing proper constitutive models for the stress-strain relationships of laterally confined concrete members. Theoretical approach of Mander is still a single stress-strain model, which employs a multiaxial failure surface for the determination of the ultimate strength of confined concrete. Alternatively, this paper introduces a simple and practical failure criterion for confined concrete with emphasis on introduction of significant modifications into the two-parameter Drucker-Prager model. The new criterion is only applicable to triaxial compression stress state which is exactly the case in the RC columns. Unlike many existing multi-parameter criteria proposed for the concrete fracture, the model needs only the compressive strength of concrete as an independent parameter and also implies for the influence of the Lode angle on the material strength. Adopting Saenz equation for stress-strain plots, satisfactory agreement between the measured and predicted results for the available experimental test data of confined normal and high strength concrete specimens is obtained. Moreover, it is found that further work involving the confinement pressure is still encouraging since the confinement model of Mander overestimates the ultimate strength of some RC columns.

A Finite Element Analysis of Stress on the Femoral Stem with Resorption of Proximal Medial Femur after Total Hip Replacement (대퇴골 근위부 골흡수가 인공 고관절 대퇴 stem에 미치는 응력에 관한 연구-FEM을 이용한 분석)

  • 김성곤
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.183-188
    • /
    • 1994
  • In clinical orthopaedics, bone resoption in the cortex is often seen post operatively on X-rays or bone densitometry after total hip replacement (THR) in the form of cortical osteoporosis or atropy. Stress shielding of bone occurs, when a load, normally carried by the bone alone, is shared with an implant as a result, the bone stresses are abnormal and with remodelling analysis this may cause extensive proximal bone resoption, possibly weakening the bone bed to the point of failure. The author made finite element models of the cemented and non-cemented type implanted femoral stem with bone resorption of the proximal medial femur and studied the feed back effect of the various degree of bone resoption to THR system by parametric analysis on the stress of the femoral stem and interface. The results of the present finite element analysis implied that the extent of proximal bone resorption has the effect of more increasing stress on the distal stem tip, cement mantle and interface in both type of femoral stem and this high distal stress possibly can cause the mechanical failure of loosening or failure after THR.

  • PDF