• 제목/요약/키워드: Failure Rate Model

검색결과 638건 처리시간 0.033초

Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)

  • Sarfarazi, Vahab;Haeri, Hadi
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.537-547
    • /
    • 2018
  • This research presents the effect of anisotropy of the hollow disc mode under Brazilian test using PFC3D. The Brazilian tensile strength test was performed on the hollow disc specimens containing the bedding layers and then these specimens were numerically modeled by using the two dimensional discrete element code (PFC3D) to calibrate this computer code for the simulation of the cracks propagation and cracks coalescence in the anisotropic bedded rocks. The thickness of each layer within the specimens varied as 5 mm, 10 mm and 20 mm and the layers angles were changed as $0^{\circ}$, $25^{\circ}$, $50^{\circ}$, $75^{\circ}$ and $90^{\circ}$. The diameter of internal hole was taken as 15 mm and the loading rate during the testing process kept as 0.016 mm/s. It has been shown that for layers angles below $25^{\circ}$ the tensile cracks produce in between the layers and extend toward the model boundary till interact and break the specimen. The failure process of the specimen may enhance as the layer angle increases so that the Brazilian tensile strength reaches to its minimum value when the bedding layers is between $50^{\circ}$ and $75^{\circ}$ but its value reaches to maximum at a layer angle of $90^{\circ}$. The number of tensile cracks decreases as the layers thickness increases and with increasing the layers angle, less layer mobilize in the failure process.

Bonded-cluster simulation of tool-rock interaction using advanced discrete element method

  • Liu, Weiji;Zhu, Xiaohua;Zhou, Yunlai;Li, Tao;Zhang, Xiangning
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.469-477
    • /
    • 2019
  • The understanding of tool-rock interaction mechanism is of high essence for improving the rock breaking efficiency and optimizing the drilling parameters in mechanical rock breaking. In this study, the tool-rock interaction models of indentation and cutting are carried out by employing the discrete element method (DEM) to examine the rock failure modes of various brittleness rocks and critical indentation and cutting depths of the ductile to brittle failure mode transition. The results show that the cluster size and inter-cluster to intra-cluster bond strength ratio are the key factors which influence the UCS magnitude and the UCS to BTS ratio. The UCS to BTS strength ratio can be increased to a more realistic value using clustered rock model so that the characteristics of real rocks can be better represented. The critical indentation and cutting depth decrease with the brittleness of rock increases and the decreasing rate reduces dramatically against the brittleness value. This effort may lead to a better understanding of rock breaking mechanisms in mechanical excavation, and may contribute to the improvement in the design of rock excavation machines and the related parameters determination.

Fracture mechanics analysis of multipurpose canister for spent nuclear fuels under horizontal/oblique drop accidents

  • Jae-Yoon Jeong;Cheol-Ho Kim;Hune-Tae Kim;Ji-Hye Kim;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4647-4658
    • /
    • 2023
  • In this paper, elastic-plastic fracture mechanics analysis is performed to determine the critical crack sizes of the multipurpose canister (MPC) manufactured using austenitic stainless steel under dynamic loading conditions that simulate drop accidents. Firstly, dynamic finite element (FE) analysis is performed using Abaqus v.2018 with the KORAD (Korea Radioactive Waste Agency)-21 model under two drop accident conditions. Through the FE analysis, critical locations and through-thickness stress distributions in the MPC are identified, where the maximum plastic strain occurs during impact loadings. Then, the evaluation using the failure assessment diagram (FAD) is performed by postulating an external surface crack at the critical location to determine the critical crack depth. It is found that, for the drop cases considered in this paper, the principal failure mechanism for the circumferential surface crack is found to be the plastic collapse due to dominant high bending axial stress in the thickness. For axial cracks, the plastic collapse is also the dominant failure mechanism due to high membrane hoop stress, followed by the ductile tearing analysis. When incorporating the strain rate effect on yield strength and fracture toughness, the critical crack depth increases from 10 to 20%.

Scoring Model을 이용한 매설배관 안전성 개선에 관한 연구 (A Study on the Safety Improvement of Buried Pipeline Using Scoring Model)

  • 손명덕;김성근
    • 대한토목학회논문집
    • /
    • 제37권1호
    • /
    • pp.175-185
    • /
    • 2017
  • 가스 사용의 지속적인 증대로 이에 따른 가스의 제조, 취급, 사용이 점점 확대되어 관련 시설이 대형화, 복잡화되어, 이로 인한 크고 작은 사고가 지속적으로 발생하고 있다. 이러한 사고는 인명피해 및 물적 손실 뿐만 아니라 국가의 경제적인 손실의 큰 원인이 된다. 가스시설의 공통적으로 많은 부분을 차지하고 있는 Pipe Line 부분에 외부의 영향에 의한 사고가 가장 큰 위험요소를 가지고 있다. 특히, 도심지역 및 인구밀집지역의 경우의 고압가스배관의 사고 발생은 경제적 손실을 비롯한 보다 많은 손실을 야기시킬 수 있다. 이러한 매설배관의 사고에 대한 예방대책으로 여러 관련 기관에서는 가스배관에 대한 안전성을 확보하기 위해서는 전체 시스템의 파손 및 위험요소를 효과적으로 평가할 필요가 있다. 특히 가스배관이 설치되거나 작동되어 질 때에 이러한 파손(failure)의 가능성을 매우 작게 하더라도 위험요소가 존재하게 된다. 그러나 일단 파손이 발생하면 인명 및 재산상의 피해가 매우 크기 때문에 파손의 원인을 분석하여 파손사고의 비율을 최소한으로 낮추는 것이 필요하다. 그러므로 본 논문에서는 Scoring Model의 정성적 위험성 분석기법을 이용하여 매설배관의 위험성을 점수로 표현하여 정량적인 숫자로 표현하였다. 이러한 가시적인 평가의 결과는 매설배관의 안전을 확보하여 실질적인 매설배관의 유지관리를 하는데 있어서 매우 효율적으로 적용될 수 있을 것이다.

Methodology for Estimating the Number of Failed Fuel Rods in Operating PWRs Using Diffusion and Kinetic Models

  • Lee, Sang-Kyu;Tak, Nam-IL;Kim, Yang-Seok;Chun, Moon-Hyun;Sung, Ki-Bang;Kang, Duck-Won
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.97-102
    • /
    • 1996
  • A methodology for estimating the number of failed fuel rods bused on the primary coolant activity in operating PWRs has been developed. This method deals with both the diffusion and the kinetic models. In case of small or medium cladding failures, the diffusion model which can consider different sizes of failure is used, whereas for large cladding failures the kinetic model is used. From the kinetic model, the release-to-birth rate ratio (R/B) is represented as a linear function of the number of failed fuel rods. This has been done by expressing the escape rate coefficient in terms of the slope of log(R/B) versus $log\;{\lambda}$. The present method has been applied to the cases of 26 cycles of several nuclear power plants for which ultrasonic testings were performed. The results show that the present method gives better predictions than the existing computer codes such as IODYNE and CADE.

  • PDF

A mechanistic analysis of H2O and CO2 diluent effect on hydrogen flammability limit considering flame extinction mechanism

  • Jeon, Joongoo;Kim, Yeon Soo;Jung, Hoichul;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3286-3297
    • /
    • 2021
  • The released hydrogen can be ignited even with weak ignition sources. This emphasizes the importance of the hydrogen flammability evaluation to prevent catastrophic failure in hydrogen related facilities including a nuclear power plant. Historically numerous attempts have been made to determine the flammability limit of hydrogen mixtures including several diluents. However, no analytical model has been developed to accurately predict the limit concentration for mixtures containing radiating gases. In this study, the effect of H2O and CO2 on flammability limit was investigated through a numerical simulation of lean limit hydrogen flames. The previous flammability limit model was improved based on the mechanistic investigation, with which the amount of indirect radiation heat loss could be estimated by the optically thin approximation. As a result, the sharp increase in limit concentration by H2O could be explained by high thermal diffusivity and radiation rate. Despite the high radiation rate, however, CO2 with the lower thermal diffusivity than the threshold cannot produce a noticeable increase in heat loss and ultimately limit concentration. We concluded that the proposed mechanistic analysis successfully explained the experimental results even including radiating gases. The accuracy of the improved model was verified through several flammability experiments for H2-air-diluent.

소프트웨어 재활 기법을 적용한 다중계 시스템의 가용도 분석 (Availability Analysis of Multiplex Systems using Software Rejuvenation Method)

  • 박기진;김성수;김재훈
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제27권8호
    • /
    • pp.730-740
    • /
    • 2000
  • 고가용성 다중계 시스템의 소프트웨어 재활 기법은 시스템의 결함 발생 이후에 수동적으로 대처하기보다는 결함이 발생하기 전에 이를 미연에 방지하는 능동적 차원의 결함 허용 방법이다. 특히 멀티미디어 이동 컴퓨팅에서 사용되는 소프트웨어는 통신 단절, 데이터 유실 등으로 인한 노화 진행이 일반 소프트웨어보다 상당히 빠르게 진행되기 때문에 소프트웨어 재활에 의한 결함 예방 방법은 대규모 멀티미디어 이동 컴퓨팅 시스템에 사용될 가능성이 높다고 볼 수 있다. 본 연구에서는 서버에서 수행되는 소프트웨어의 재활 주기, 재활 소요시간, 서버의 고장률, 수리률, 동시에 가동되는 서버의 수, 서버의 가동 기간 및 가동 방식 등의 시스템 운영 파라미터에 기초하여, 소프트웨어 재활 정책에 대한 평가를 위한 평형 상태에서의 확률, downtime, 가용도, 손실 비용 등을 계산하였다 수학적 분석을 통해 구한 재활 모델의 closed-form 해는 다양한 시스템 운영 상태에 대한 실험을 통해 검증하였으며, 소프트웨어 재활을 통한 예방적 결함허용 기법의 적용 가능성이 높다는 것을 확인하였다. 또한 서버의 고장률 및 불안정률이 소프트웨어 재활 정책 결정에 중요한 요소임을 파악하였다.

  • PDF

Fast Diagnosis Method for Submodule Failures in MMCs Based on Improved Incremental Predictive Model of Arm Current

  • Xu, Kunshan;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1608-1617
    • /
    • 2018
  • The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.

공 던지기 로봇의 정책 예측 심층 강화학습 (Deep Reinforcement Learning of Ball Throwing Robot's Policy Prediction)

  • 강영균;이철수
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.398-403
    • /
    • 2020
  • Robot's throwing control is difficult to accurately calculate because of air resistance and rotational inertia, etc. This complexity can be solved by using machine learning. Reinforcement learning using reward function puts limit on adapting to new environment for robots. Therefore, this paper applied deep reinforcement learning using neural network without reward function. Throwing is evaluated as a success or failure. AI network learns by taking the target position and control policy as input and yielding the evaluation as output. Then, the task is carried out by predicting the success probability according to the target location and control policy and searching the policy with the highest probability. Repeating this task can result in performance improvements as data accumulates. And this model can even predict tasks that were not previously attempted which means it is an universally applicable learning model for any new environment. According to the data results from 520 experiments, this learning model guarantees 75% success rate.

예방정비를 고려한 복수 부품 시스템의 신뢰성 분석: 마코프 체인 모형의 응용 (Reliability Analysis of Multi-Component System Considering Preventive Maintenance: Application of Markov Chain Model)

  • 김헌길;김우성
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권4호
    • /
    • pp.313-322
    • /
    • 2016
  • Purpose: We introduce ways to employ Markov chain model to evaluate the effect of preventive maintenance process. While the preventive maintenance process decreases the failure rate of each subsystems, it increases the downtime of the system because the system can not work during the maintenance process. The goal of this paper is to introduce ways to analyze this trade-off. Methods: Markov chain models are employed. We derive the availability of the system consisting of N repairable subsystems by the methods under various maintenance policies. Results: To validate our methods, we apply our models to the real maintenance data reports of military truck. The error between the model and the data was about 1%. Conclusion: The models developed in this paper fit real data well. These techniques can be applied to calculate the availability under various preventive maintenance policies.