• Title/Summary/Keyword: Failure Rate Model

Search Result 631, Processing Time 0.025 seconds

Availability analysis of subsea blowout preventer using Markov model considering demand rate

  • Kim, Sunghee;Chung, Soyeon;Yang, Youngsoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.775-787
    • /
    • 2014
  • Availabilities of subsea Blowout Preventers (BOP) in the Gulf of Mexico Outer Continental Shelf (GoM OCS) is investigated using a Markov method. An updated ${\beta}$ factor model by SINTEF is used for common-cause failures in multiple redundant systems. Coefficient values of failure rates for the Markov model are derived using the ${\beta}$ factor model of the PDS (reliability of computer-based safety systems, Norwegian acronym) method. The blind shear ram preventer system of the subsea BOP components considers a demand rate to reflect reality more. Markov models considering the demand rate for one or two components are introduced. Two data sets are compared at the GoM OCS. The results show that three or four pipe ram preventers give similar availabilities, but redundant blind shear ram preventers or annular preventers enhance the availability of the subsea BOP. Also control systems (PODs) and connectors are contributable components to improve the availability of the subsea BOPs based on sensitivity analysis.

Saturation Depth and Slope Stability considering Unsteady Rainfall in Natural Slope (비정상강우를 적용한 자연사면에서의 포화깊이 산정 및 사면안정성 평가)

  • Kim, Sang-Hoon;Kim, Seong-Pil;Son, Young-Hwan;Heo, Joon;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • In Korea, most landslides occurr during the rainy season and have shallow failure planes parallel to the slope. For these types of rainfall-induced failures, the most important factor triggering slope unstability is decrease in the matric suction of unsaturated soils with increasing saturation depth by rainfall infiltration. For this reason, estimation of cumulative infiltration has a significance. In this study, infiltration rate and cumulative infiltration are estimated by using both Mein & Larson model based on Green-Ampt infiltration model and using modified Mein & Larson model to which unsteady rainfall is applied. According to the results, the modified model is more reasonable than Mein & Larson method itself in estimation of infiltration rate and saturation depth because of considering real pending condition.

Implant survival and risk factor analysis in regenerated bone: results from a 5-year retrospective study

  • Hong, Ji-Youn;Shin, Eun-Young;Herr, Yeek;Chung, Jong-Hyuk;Lim, Hyun-Chang;Shin, Seung-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.6
    • /
    • pp.379-391
    • /
    • 2020
  • Purpose: The aims of this study were to evaluate the 5-year cumulative survival rate (CSR) of implants placed with guided bone regeneration (GBR) compared to implants placed in native bone, and to identify factors contributing to implant failure in regenerated bone. Methods: This retrospective cohort study included 240 patients who had implant placement either with a GBR procedure (regenerated bone group) or with pristine bone (native bone group). Data on demographic features (age, sex, smoking, and medical history), location of the implant, implant-specific features, and grafting procedures and materials were collected. The 5-year CSRs in both groups were estimated using Kaplan-Meier analysis. Risk factors for implant failure were analyzed with a Cox proportional hazards model. Results: In total, 264 implants in the native bone group and 133 implants in the regenerated bone group were analyzed. The 5-year CSRs were 96.4% in the regenerated bone group and 97.5% in the native bone group, which was not a significant difference. The multivariable analysis confirmed that bone status was not an independent risk factor for implant failure. However, smoking significantly increased the failure rate (hazard ratio, 10.7; P=0.002). Conclusions: The 5-year CSR of implants placed in regenerated bone using GBR was comparable to that of implants placed in native bone. Smoking significantly increased the risk of implant failure in both groups.

Risk assessment of transmission line structures under severe thunderstorms

  • Li, C.Q.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.773-784
    • /
    • 1998
  • To assess the collapse risk of transmission line structures subject to natural hazards, it is important to identify what hazard may cause the structural collapse. In Australia and many other countries, a large proportion of failures of transmission line structures are caused by severe thunderstorms. Because the wind loads generated by thunderstorms are not only random but time-variant as well, a time-dependent structural reliability approach for the risk assessment of transmission line structures is essential. However, a lack of appropriate stochastic models for thunderstorm winds usually makes this kind of analysis impossible. The intention of the paper is to propose a stochastic model that could realistically and accurately simulate wind loading due to severe thunderstorms. With the proposed thunderstorm model, the collapse risk of transmission line structures under severe thunderstorms is assessed numerically based on the computed failure probability of the structure.

Stochastic Petri Nets Modeling Methods of Channel Allocation in Wireless Networks

  • Ro, Cheul-Woo;Kim, Kyung-Min
    • International Journal of Contents
    • /
    • v.4 no.3
    • /
    • pp.20-28
    • /
    • 2008
  • To obtain realistic performance measures for wireless networks, one should consider changes in performance due to failure related behavior. In performability analysis, simultaneous consideration is given to both pure performance and performance with failure measures. SRN is an extension of stochastic Petri nets and provides compact modeling facilities for system analysis. In this paper, a new methodology to model and analyze performability based on stochastic reward nets (SRN) is presented. Composite performance and availability SRN models for wireless handoff schemes are developed and then these models are decomposed hierarchically. The SRN models can yield measures of interest such as blocking and dropping probabilities. These measures are expressed in terms of the expected values of reward rate functions for SRNs. Numerical results show the accuracy of the hierarchical model. The key contribution of this paper constitutes the Petri nets modeling techniques instead of complicate numerical analysis of Markov chains and easy way of performance analysis for channel allocation under SRN reward concepts.

Regression models generated by gamma random variables with long-term survivors

  • Ortega, Edwin M.M.;Cordeiro, Gauss M.;Hashimoto, Elizabeth M.;Suzuki, Adriano K.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.43-65
    • /
    • 2017
  • We propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest has the Poisson distribution and the time for the event follows the gamma-G family of distributions. The extended family of gamma-G failure-time models with long-term survivors is flexible enough to include many commonly used failure-time distributions as special cases. We consider a frequentist analysis for parameter estimation and derive appropriate matrices to assess local influence on the parameters. Further, various simulations are performed for different parameter settings, sample sizes and censoring percentages. We illustrate the performance of the proposed regression model by means of a data set from the medical area (gastric cancer).

Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.611-620
    • /
    • 2018
  • In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results shows that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilize in failure process. Also the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear test tensile strength was increased by increasing the layer thickness.

Numerical simulation of the effect of bedding layer on the tensile failure mechanism of rock using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.43-50
    • /
    • 2019
  • In this research, the effect of bedding layer on the tensile failure mechanism of rocks has been investigated using PFC2D. For this purpose, firstly calibration of PFC2d was performed using Brazilian tensile strength. Secondly Brazilian test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Totally, 21 model were simulated and tested by loading rate of 0.016 mm/s. The results show that when layer angle is less than 15, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilizes in failure process. Also, the failure trace is very short. It's to be noted that number of cracks decrease with increasing the layer thickness. Also, Brazilian tensile strength is minimum when bedding layer angle is between $45^{\circ}$ and $75^{\circ}$. The maximum one is related to layer angle of $90^{\circ}$.

Study of compressive behavior of triple joints using experimental test and numerical simulation

  • Sarfarazi, Vahab;Wang, Xiao;Nesari, Mojtaba;Ghalam, Erfan Zarrin
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.49-62
    • /
    • 2022
  • Experimental and discrete element methods were used to investigate the effects of triple joints lengths and triple joint angle on the failure behavior of rock mass under uniaxial compressive test. Concrete samples with dimension of 20 cm × 20 cm × 5 cm were prepared. Within the specimen, three imbedded joint were provided. The joint lengths were 2 cm, 4cm and 6 cm. In constant joint lengths, the angle between middle joint and other joints were 30°, 60°, 90°, 120° and 150°. Totally 15 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, the models containing triple joints, length and joint angle are similar to the experiments, were numerical by Particle flow code in two dimensions (PFC2D). Loading rate in numerical modelling was 0.05 mm/min. Tensile strength of material was 1 MPa. The results show that the failure behaviors of rock samples containing triple joints were governed by both of the angle and the length of the triple joints. The uniaxial compressive strengths (UCS) of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behavior of discontinuities is related to the number of the induced tensile cracks which are increased by decreasing the joint length. Along with the damage failure of the samples, the acoustic emission (AE) activities are excited. There were only a few AE hits in the initial stage of loading, then AE hits rapidly grow before the applied stress reached its peak. In addition, every stress drop was accompanied by a large number of AE hits. Finally, the failure pattern and failure strength are similar in both methods i.e., the experimental testing and the numerical simulation methods.

Cost Optimization of Ineffective Periodic Preventive Maintenance

  • Jung, Gi-Mun;Park, Dong-Ho;Yum, Joon-Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.99-106
    • /
    • 1999
  • This paper considers an imperfect repair model for which the repairable system is maintained preventively at periodic times and is replaced by a new system when a predetermined number of preventive maintenance has been applied. our main objective of this is to determine the optimal number of preventive maintenances before the system is replaced and the optimal length of interval between two consecutive preventive maintenances under a new repair model which is referred to as an ineffective preventive maintenance. Such a model assumes a periodic preventive maintenance in which the system is effectively maintained with a certain probability. Otherwise the system is not improved at all after each maintenance and thus the failure rate remains the same as before. The criteria to determine the optimal number of preventive maintenances and length of period is the expected cost rate per unit time for an infinite time span. We give the explicit expressions for the expected cost rate per unit time. Some numerical examples are presented for illustrative purposes.

  • PDF