• Title/Summary/Keyword: Failure Analysis and Modeling

Search Result 423, Processing Time 0.029 seconds

Reliability Analysis of Chloride Ion Penetration based on Level II Method for Marine Concrete Structure (해양 콘크리트 구조물에 대한 Level II 수준에서의 염소이온침투 신뢰성 해석)

  • Han, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.129-139
    • /
    • 2008
  • Due to uncertainty of numerous variables in durability model, a probalistic approach is increasing. Monte Carlo simulation (Level III method) is an easily accessible method, but requires a lot of repeated operations. This paper evaluated the effectiveness of First Order Second Moment method (Level II method), which is more convenient and time saving method than MCS, to predict the corrosion initiation in harbor concrete structure. Mean Value First Order Second Moment method (MV FOSM) and Advanced First Order Second Moment method (AFOSM) are applied to the error function solution of Fick's second law modeling chloride diffusion. Reliability index and failure probability based on MV FOSM and AFOSM are compared with the results by MCS. The comparison showed that AFOSM and MCS predict the similar reliability index and MV FOSM underestimates the probability of corrosion initiation by chloride attack. Also, the sensitivity of variables in durability model to corrosion initiation probability was evaluated on the basis of AFOSM. The results showed that AFOSM is a simple and efficient method to estimate the probability of corrosion initiation in harbor structures.

Finite element modelling of the shear behaviour of profiled composite walls incorporating steel-concrete interaction

  • Anwar Hossain, K.M.;Wright, H.D.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.659-676
    • /
    • 2005
  • The novel form of composite walling system consists of two skins of profiled steel sheeting with an in-fill of concrete. The behaviour of such walling under in-plane shear is important in order to utilise this system as shear elements in a steel framed building. Steel sheet-concrete interface governs composite action, overall behaviour and failure modes of such walls. This paper describes the finite element (FE) modelling of the shear behaviour of walls with particular emphasis on the simulation of steel-concrete interface. The modelling of complex non-linear steel-concrete interaction in composite walls is conducted by using different FE models. Four FE models are developed and characterized by their approaches to simulate steel-concrete interface behaviour allowing either full or partial composite action. Non-linear interface or joint elements are introduced between steel and concrete to simulate partial composite action that allows steel-concrete in-plane slip or out of plane separation. The properties of such interface/joint elements are optimised through extensive parametric FE analysis using experimental results to achieve reliable and accurate simulation of actual steel-concrete interaction in a wall. The performance of developed FE models is validated through small-scale model tests. FE models are found to simulate strength, stiffness and strain characteristics reasonably well. The performance of a model with joint elements connecting steel and concrete layers is found better than full composite (without interface or joint elements) and other models with interface elements. The proposed FE model can be used to simulate the shear behaviour of composite walls in practical situation.

Forming Shop Analysis with Adaptive Systems Approach (적응시스템 접근법을 이용한 조선소 가공공장 분석)

  • Dong-Hun Shin;Jong-Hun Woo;Jang-Hyun Lee;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.75-80
    • /
    • 2002
  • In these days of severe struggle for existence, the world has changed a great deal to global and digital oriented period. The enterprises try to introduce new management and production system to adapt such a change. But, if the only new technologies are applied to an enterprise without definite analysis about manufacturing, failure fellows as a logical consequence. Hence, enterprise must analyze manufacturing system definitely and needs new methodologies to mitigate risk. This study suggests that the new approach, which is systems approach for process improvement, is organized to systems analysis, systems diagnosis, and systems verification. Systems analysis analyzes manufacturing systems with object-oriented methodology-UML(Unified Modeling language) from a point of product, process, and resource view. Systems diagnosis identifies the constraints to optimize the system through scientific management or TOC(Theory of constraints). Systems verification shows the solution with virtual manufacturing technique applied to the core problem which emerged from systems diagnosis. This research shows the artifacts to improve the productivity with the above methodology applied to forming shop. UML provides the definite tool for analysis and re-usability to adapt itself to environment easily. The logical tree of TOC represents logical tool to optimize the forming shop. Discrete event simulator-QUEST suggests the tool for making a decision to verify the optimized forming shop.

Nonlinear modeling of roof-to-wall connections in a gable-roof structure under uplift wind loads

  • Enajar, Adnan F.;Jacklin, Ryan B.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.28 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • Light-frame wood structures have the ability to carry gravity loads. However, their performance during severe wind storms has indicated weakness with respect to resisting uplift wind loads exerted on the roofs of residential houses. A common failure mode observed during almost all main hurricane events initiates at the roof-to-wall connections (RTWCs). The toe-nail connections typically used at these locations are weak with regard to resisting uplift loading. This issue has been investigated at the Insurance Research Lab for Better Homes, where full-scale testing was conducted of a house under appropriate simulated uplift wind loads. This paper describes the detailed and sophisticated numerical simulation performed for this full-scale test, following which the numerical predictions were compared with the experimental results. In the numerical model, the nonlinear behavior is concentrated at the RTWCs, which is simulated with the use of a multi-linear plastic element. The analysis was conducted on four sets of uplift loads applied during the physical testing: 30 m/sincreased by 5 m/sincrements to 45 m/s. At this level of uplift loading, the connections exhibited inelastic behavior. A comparison with the experimental results revealed the ability of the sophisticated numerical model to predict the nonlinear response of the roof under wind uplift loads that vary both in time and space. A further component of the study was an evaluation of the load sharing among the trusses under realistic, uniform, and code pressures. Both the numerical model and the tributary area method were used for the load-sharing calculations.

A Study On Structural Stability Of Blast Door by Blast Pressure (폭압에 의한 방폭문의 구조적 안정성에 대한 연구)

  • Kim, Nam Hyuk;Park, Kwan Jin;Lee, Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.8-15
    • /
    • 2016
  • The purpose of this study is to design a model with the structural stability so as not to lose the operational function due to structural plastic or fail of a sliding blast door by blast pressure to this aim, a numerical simulation was performed using full-size experiments and M&S (Modeling & Simulation) of the sliding blast door. The sliding blast door ($W3,000{\times}H2,500mm$) under the blast load is in the form of a sliding type 2-way metal grill, which was applied by a design blast pressure (reflected pressure $P_r$) of 17 bar. According to the experimental results of a real sliding blast door under blast load, the blast pressure reached the sliding blast door approximately 4.3 ms after the explosion and lasted about 4.0 ms thereafter. The maximum blast pressure($P_r$) was 347.7 psi (2,397.3 kPa), it is similar to the UFC 3-340-02 of Parameter(91 %). In addition, operation inspection that was conducted for the sliding blast door after real test showed a problem of losing the door opening function, which was because of the fail of the Reversal Bolt that was installed to prevent the shock due to rebound of the blast door from the blast pressure. According to the reproduction of the experiment through M&S by applying the blast pressure measurement value of the full-size experiments, the sliding blast door showed a similar result to the full-size experiment in that the reversal bolt part failed to lose the function. In addition, as the pressure is concentrated on the failed reversal bolt, the Principal Tensile Failure Stress was exceeded in only 1.25 ms after the explosion, and the reversal bolt completely failed after 5.4 ms. Based on the result of the failed reversal bolt through the full-size experiment and M&S, the shape and size of the bolts were changed to re-design the M&S and re-analyze the sliding blast door. According to the M&S re-analysis result when the reversal bolt was designed in a square of 25 mm ($625mm^2$), the maximum pressure that the reversal bolt receives showed 81% of the principal tensile failure stress of the material, in plastic stage before fail.

Numerical modeling of uplift resistance of buried pipelines in sand, reinforced with geogrid and innovative grid-anchor system

  • Mahdi, Majid;Katebi, Hooshang
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.757-774
    • /
    • 2015
  • Reinforcing soils with the geosynthetics have been shown to be an effective method for improving the uplift capacity of granular soils. The pull-out resistance of the reinforcing elements is one of the most notable factors in increasing the uplift capacity. In this paper, a new reinforcing element including the elements (anchors) attached to the ordinary geogrid for increasing the pull-out resistance of the reinforcement, is used. Thus, the reinforcement consists of the geogrid and anchors with the cylindrical plastic elements attached to it, namely grid-anchors. A three-dimensional numerical study, employing the commercial finite difference software FLAC-3D, was performed to investigate the uplift capacity of the pipelines buried in sand reinforced with this system. The models were used to investigate the effect of the pipe diameter, burial depth, soil density, number of the reinforcement layers, width of the reinforcement layer, and the stiffness of geogrid and anchors on the uplift resistance of the sandy soils. The outcomes reveal that, due to a developed longer failure surface, inclusion of grid-anchor system in a soil deposit outstandingly increases the uplift capacity. Compared to the multilayer reinforcement, the single layer reinforcement was more effective in enhancing the uplift capacity. Moreover, the efficiency of the reinforcement layer inclusion for uplift resistance in loose sand is higher than dense sand. Besides, the efficiency of reinforcement layer inclusion for uplift resistance in lower embedment ratios is higher. In addition, by increasing the pipe diameter, the efficiency of the reinforcement layer inclusion will be lower. Results demonstrate that, for the pipes with an outer diameter of 50 mm, the grid-anchor system of reinforcing can increase the uplift capacity 2.18 times greater than that for an ordinary geogrid and 3.20 times greater than that for non-reinforced sand.

Ideal body modeling of porous rock by frost-thawing (다공질암의 동결융해 현상에 대한 이상물체 모델의 적용성 연구)

  • Han, Heui-Soo;Back, Yoog
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.399-405
    • /
    • 2010
  • The accumulated displacements and fatigues of rock are increased by the stress-hysteresis, induced from repeated frost-thawing. Also the shear strength is decreased by them continuously. The stress-hysteresis is affected by the atmospheric temperature changes, whose behavior is visco-elasticity, usually. Therefore, to do ideal body analysis, Kelvin model could be used to analyze the frost-thawing behavior in winter. In general, rock slope failure occurs by the deterioration of rocks, which is caused by the repetition of freezing-thawing process. In order to keep the safety of such rock mass structures the deterioration process of rock needs to be described quantitatively using some meaningful parameters. In this work, the deterioration process in freezing-thawing cycle of tuff, which is a famous soft porous rock, is investigated through laboratory tests and successfully described as a differential equation for the change of porosity. And then, the deterioration of the mechanical properties of rock, such as Young's modulus and uniaxial compressive strength, are quantitatively described as a function of the porosity.

Secure Handoff Based on Dual Session Keys in Mobile IP with AAA (Mobile IP 및 AAA 프로토콜 기반으로 신속성과 안전성을 고려한 듀얼세션키 핸드오프 방식연구c)

  • Choi Yumi;Lee Hyung-Min;Choo Hyunseung
    • Journal of Internet Computing and Services
    • /
    • v.6 no.3
    • /
    • pp.107-119
    • /
    • 2005
  • The Mobile IP has evolved from providing mobility support for portable computers to support wireless handheld devices with high mobility patterns. The Mobile IP secures mobility, but does not guarantee security, In this paper, the Mobile IP has been adapted to allow AM protocol that supports authentication, authorization and accounting for authentication and collection of accounting information of network usage by mobile nodes, For this goal, we propose a new security handoff mechanism to intensify the Mobile IP security and to achieve fast handoff. In the proposed mechanism, we provide enough handoff achievement time to maintain the security of mobile nodes, According to the analysis of modeling result, the proposed mechanism composed the basic Mobile IP along with AM protocol is up to about $60\%$ better in terms of normalized surcharge for the handoff failure rate that considers handoff time.

  • PDF

Boundary Zone Overlapping Scheme for Fast Handoff Based on Session Key Reuse (AAA MIP 환경에서 공유영역 기반 세션키 재사용을 통한 고속 핸드오프 방식 연구)

  • Choi, Yu-Mi;Chung, Min-Young;Choo, Hyun-Seung
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.481-488
    • /
    • 2005
  • The Mobile W provides an efficient and scalable mechanism for host mobility within the Internet. However, the mobility implies higher security risks than static operations in fixed networks. In this paper, the Mobile IP has been adapted to allow AAA protocol that supports authentication, authorization, and accounting(AAA) for security and collection for accounting information of network usage by mobile nodes(MNs). For this goal, we Propose the boundary tone overlapped network structure while solidifying the security for the authentication of an MN. That is, the Proposed scheme delivers the session keys at the wired link for MN's security instead of the wireless one, so that it provides a fast and seamless handoff mechanism. According to the analysis of modeling result, the proposed mechanism compared to the existing session key reuse method is up to about $40\%$ better in terms of normalized surcharge for the handoff failure rate that considers handoff total time.

Prognostics for Stator Windings of Water-Cooled Generator Against Water Absorption (수냉식 발전기 고정자 권선의 흡습 건전성 예지)

  • Jang, Beom Chan;Youn, Byeng D.;Kim, Hee Soo;Bae, Yong Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.625-629
    • /
    • 2015
  • In this study, we develop a prognostic method of assessing the stator windings of power generators against water absorption through statistical data analysis and degradation modeling. The 42 windings of the generator are divided into two groups: the absorption and normal groups. A degradation model of a winding is constructed using Fick's second law to predict the level of absorption. By analyzing data from the normal group, we can determine the distribution of the data of normal windings. The health index of a winding is estimated using the directional Mahalanobis distance (DMD) method. Finally, the probability distributions of the failure time of the windings are determined.