• Title/Summary/Keyword: Factory Process

Search Result 708, Processing Time 0.034 seconds

Present Situation and Propulsion Strategy of Factory Automation in Manufacturing Company (제조기업의 공장자동화 현황과 추진전략에 관한 연구)

  • 이덕수;박노국;송문익
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.233-241
    • /
    • 1995
  • Many companies worldwide today are pursuing to make diversified and highly qualified products. Factory automation aims at maximizing profits through the lessened inventory and shortened delivery time, which will enable the company to become more responsive to market changes. This research analyzes the following feartures in the process of factory automation. first, the automation level according to the company class. second, productivity according to the automation level. third, the organization menber's interest in the automation. finally, the possible problems in factory automation.

  • PDF

The Failure Mode and Effects Analysis Implementation for Laser Marking Process Improvement: A Case Study

  • Deng, Wei-Jaw;Chiu, Chung-Ching;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.8 no.1
    • /
    • pp.137-153
    • /
    • 2007
  • Failure mode and effects analysis (FMEA) is a preventive technique in reliability management field. The successful implementation of FMEA technique can avoid or reduce the probability of system failure and achieve good product quality. The FMEA technique had applied in vest scopes which include aerospace, automatic, electronic, mechanic and service industry. The marking process is one of the back ends testing process that is the final process in semiconductor process. The marking process failure can cause bad final product quality and return although is not a primary process. So, how to improve the quality of marking process is one of important production job for semiconductor testing factory. This research firstly implements FMEA technique in laser marking process improvement on semiconductor testing factory and finds out which subsystem has priority failure risk. Secondly, a CCD position solution for priority failure risk subsystem is provided and evaluated. According analysis result, FMEA and CCD position implementation solution for laser marking process improvement can increase yield rate and reduce production cost. Implementation method of this research can provide semiconductor testing factory for reference in laser marking process improvement.

A case study on the application of process abnormal detection process using big data in smart factory (Smart Factory Big Data를 활용한 공정 이상 탐지 프로세스 적용 사례 연구)

  • Nam, Hyunwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.99-114
    • /
    • 2021
  • With the Fourth Industrial Revolution based on new technology, the semiconductor manufacturing industry researches various analysis methods such as detecting process abnormalities and predicting yield based on equipment sensor data generated in the manufacturing process. The semiconductor manufacturing process consists of hundreds of processes and thousands of measurement processes associated with them, each of which has properties that cannot be defined by chemical or physical equations. In the individual measurement process, the actual measurement ratio does not exceed 0.1% to 5% of the target product, and it cannot be kept constant for each measurement point. For this reason, efforts are being made to determine whether to manage by using equipment sensor data that can indirectly determine the normal state of each step of the process. In this study, the Functional Data Analysis (FDA) was proposed to define a process abnormality detection process based on equipment sensor data and compensate for the disadvantages of the currently applied statistics-based diagnosis method. Anomaly detection accuracy was compared using machine learning on actual field case data, and its effectiveness was verified.

Strategies of smart factory building and Application of small & medium-sized manufacturing enterprises (스마트팩토리 구축전략과 중소.중견 제조기업의 적용 방안)

  • Park, Jong-Shik;Kang, Kyung-sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.227-236
    • /
    • 2017
  • Smart Manufacturing Factory is a paradigm of the future lead to the fourth industrial revolution that led Germany and the United States. Now the automation of the production facility and won a certain degree, and through the process of integrating the entire process, including planning, design, distribution of information and communication technology products in emerging as a core competitiveness of the national economy. In particular, the company accelerated the smart factory building in order to improve the manufacturing industry, cost savings and productivity simply to incorporate internet of things(IoT),Robot, artificial intelligence, big data technology as a factory automation level of sophistication of the system and out to progress to the level that replaces human labor have. In this we should look at the trend of promoting domestic and foreign factories want to present these smart strategies for Korea.

A Study on Fuzzy Logic Based Intelligent Control of Robot System to Improve the Work Efficiency for Smart Factory

  • Kim, Hee-Jin;Kim, Dong-Ho;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_1
    • /
    • pp.645-658
    • /
    • 2021
  • In this paper, we propose a new approach to intelligent control based on fuzzy logic for work efficiency improvement of smart factory by the applicaion of ariticulated robot. The intelligent control that is applied to the working process by the joint of robotic manipulator is the main focus to improve a work efficiency for implimentation of smart factory in general manufacturing process. In this study, we propose a new method of a fuzzy model and then develop a nonlinear relationship between interaction forces and manipulator position using a fuzzy model. The reliability of the proposed control method is illustrated by simulation and experiments.

Improvement of Factory Data in Industrial Land Information System (산업입지정보시스템 공장정보 개선에 관한 연구)

  • Choe, Yu-Jeong;Lim, Jae-Deok;Kim, Seong-Geon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.97-106
    • /
    • 2020
  • The factory information provided by the Industrial Location Information System (ILIS) is provided as raw data by the Korea Industrial Complex Corporation and registered after a filtering process, so the new factory information update is slow. In this study, to solve the problem of updating factory information of industrial location information system, using building data of road name address with relatively fast renewal cycle and building data of real estate, we compared the factory information of existing ILIS and extracted new factory information. In the process of comparison, a method was proposed to compare spatial objects of different types with point data and polygon data. Attribute information matching and object matching were performed, and attribute values of new factory information were extracted. The accuracy evaluation of the proposed spatial analysis method showed 79% accuracy, and the above matching technique was used to confirm the possibility of convergence of road name address data, real estate data and factory information of ILIS.

Design of GlusterFS Based Big Data Distributed Processing System in Smart Factory (스마트 팩토리 환경에서의 GlusterFS 기반 빅데이터 분산 처리 시스템 설계)

  • Lee, Hyeop-Geon;Kim, Young-Woon;Kim, Ki-Young;Choi, Jong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.70-75
    • /
    • 2018
  • Smart Factory is an intelligent factory that can enhance productivity, quality, customer satisfaction, etc. by applying information and communications technology to the entire production process including design & development, manufacture, and distribution & logistics. The precise amount of data generated in a smart factory varies depending on the factory's size and state of facilities. Regardless, it would be difficult to apply traditional production management systems to a smart factory environment, as it generates vast amounts of data. For this reason, the need for a distributed big-data processing system has risen, which can process a large amount of data. Therefore, this article has designed a Gluster File System (GlusterFS)-based distributed big-data processing system that can be used in a smart factory environment. Compared to existing distributed processing systems, the proposed distributed big-data processing system reduces the system load and the risk of data loss through the distribution and management of network traffic.

Convergence Security Technology of OPC-UA Protocol Gateway based on DPI & Self-Similarity for Smart Factory Network (스마트 팩토리 망에서 DPI와 자기 유사도 기술 기반의 OPC-UA 프로토콜 게이트웨이 융합 보안 기술)

  • Shim, Jae-Yoon;Lee, June-Kyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1305-1311
    • /
    • 2016
  • The smart factory, a combination of ICT technology to the entire production process of a product, means can you intelligent factory is to achieve such reduction and process improvement of the production cost. To implement the smart factory, inevitably must have an internal equipment connections to the external network, this is by equipment which is operated by the existing closure network is exposed to the outside network, the security vulnerability so that gender is increased. In order to solve this problem, it is possible to apply security solutions that are used in normal environments. However, it is impossible to have just completely blocking security threats that can occur in a smart factory network. Further, considering the economic damage that can occur during security breach accident, which cannot be not a serious problem. Therefore, in this paper, a look to know the security measures that can be applied to smart factory, to introduce the main fusion security technology necessary to smart factory dedicated security gateway.

Hierarchical Constructions of Digital Virtual Factory and its Management (디지털 가상공장의 계층적 구축과 운영에 관한 연구)

  • Kim Yu-Seok;Noh Sang-Do;Hah Sang-Dong;Shin Jong-Gye
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.960-964
    • /
    • 2005
  • Digital Virtual Manufacturing is a technology to facilitate effective product developments and agile productions by digital models representing the physical and logical schema and the behavior of real manufacturing systems including products, process, manufacturing resources and plants. A digital virtual factory as a well-designed and integrated environment is essential for successful applications of this technology. In this research, we constructed a sophisticated digital virtual factory of the shipbuilding company's section steel shop by 3-D CAD and virtual manufacturing simulation. This digital virtual factory can be applied for diverse engineering activities in design, manufacturing and control of the real factory.

  • PDF

UML Analysis and Digital Model Implementation for Micro-factory (초소형 공장의 객체지향 분석 및 디지털 모델구축)

  • Park, Sang-Ho;Choi, Sung-Il;Jung, Young-Sang;Song, Joon-Yub;Lee, Chang-Woo;Subramaniyam, Murali;Jang, Seck-Ho;Kim, Jin-Won
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.44-49
    • /
    • 2007
  • Recent manufacturing system requires development on new production technology to enable prompt manufacturing of diverse products. Most of the researchers have been working on micro-factory. Especially, focus on manufacturing of micro parts. Present manufacturing system consumes excessive resources in the form of energy and space to manufacture the micro parts. In this study, the micro lens module assembly system was modeled, analyzed with MST(Micro System Technology) Application Module and simulated through UML Language (Unified Modeling Language) with object-oriented logical model analysis method. Digital model of micro-factory was modeled, to execute the new paradigm of digitalization on products, resources and processes of micro-factory.