• Title/Summary/Keyword: Factory Automation System

Search Result 340, Processing Time 0.025 seconds

FPGA Implementation of VME System Controller (VME 시스템 제어기의 FPGA 구현)

  • Bae, Sang-Hyun;Lee, Kang-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2914-2922
    • /
    • 1997
  • For FA (factory automation) and ATE (automatic test equipment) in the industrial area, the standard bus needs to increase the system performance of multiprocessor environment. VME(versa module european package format) bus is appropriated to the standard bus but has features of small package and low board density. Beside, the density of board and semiconductor have grown to become significant issues that affect development time, project cost and field diagnostics. To fit this trend, in this paper, we composed Revision C.1 (IEEE std. P1014-1987) of the integrated environment for the main function such as arbitration, interrupt and interface between, VMEbus and several control modules Also the designed, VME system controller is implemented on FPGA that can be located even into slot 1. The control and function modules are coded with VHDL mid-fixed description method and then those operations are verified by simulation. As a result of experiment, we confirmed the most important that is the operation of Bus timer about Bus error signal should occur within $56{\mu}m$, and both control and function modules have the reciprocal operation correctly. Thus, the constructed VHDL library will be able to apply the system based VMEbus and ASIC design.

  • PDF

Design and Implementation of the JAVA Serial Communication Program to Control the Industrial Digital Indicator (산업용 디지털 지시계 제어를 위한 자바 시리얼 통신 프로그램의 설계와 구현)

  • Kim, Tai-Suk;Kim, Jong-Soo;Lee, Jung-Hwa
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.794-801
    • /
    • 2011
  • Main machinery in the factory have various digital indicator to display its operating data for the manager. It is useful to control these datum at the remote office for factory automation in order to increase machine productivity. It is easy to use Ethernet infrastructure for remote communication. But most of all machinery in domestic factories still support RS232c or RS485 serial communication way. In this case to control machinery datum on the ethernet base, it is need to change RS232C or RS485 data to ethernet base. In this paper, in order to develop a remote progress management system through the wireless Internet, we show a design method to make easy maintenance by developing the system with both the JAVA language and RxTx Package for RS232c serial communication. For the system implementation, we added the digital indicator connect with a thermo couple to a machine which provide the real time status data of temperature. To connect machines management server program, we set up a convertor to change the RS485 data to the RS232c and also another convertor to change the RS232c data to wireless ethernet.

Development of a deep learning-based cabbage core region detection and depth classification model (딥러닝 기반 배추 심 중심 영역 및 깊이 분류 모델 개발)

  • Ki Hyun Kwon;Jong Hyeok Roh;Ah-Na Kim;Tae Hyong Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.392-399
    • /
    • 2023
  • This paper proposes a deep learning model to determine the region and depth of cabbage cores for robotic automation of the cabbage core removal process during the kimchi manufacturing process. In addition, rather than predicting the depth of the measured cabbage, a model was presented that simultaneously detects and classifies the area by converting it into a discrete class. For deep learning model learning and verification, RGB images of the harvested cabbage 522 were obtained. The core region and depth labeling and data augmentation techniques from the acquired images was processed. MAP, IoU, acuity, sensitivity, specificity, and F1-score were selected to evaluate the performance of the proposed YOLO-v4 deep learning model-based cabbage core area detection and classification model. As a result, the mAP and IoU values were 0.97 and 0.91, respectively, and the acuity and F1-score values were 96.2% and 95.5% for depth classification, respectively. Through the results of this study, it was confirmed that the depth information of cabbage can be classified, and that it can be used in the development of a robot-automation system for the cabbage core removal process in the future.

A Monitoring System for Working Environments Using Wireless Sensor Networks (무선 센서 네트워크를 이용한 작업환경 모니터링 시스템)

  • Jung, Sang-Joon;Chung, Youn-Ky
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.10
    • /
    • pp.1478-1485
    • /
    • 2009
  • A sensor network which is composed of a large number of sensors that perform various sensing is applied in a variety of fields. The sensor networks can be widely used for various application area like as home automation, fire detection and security area. Development of new sensor to have appropriate functions and deployment of networks for suitable application are served actively. In this paper, we design and implement a system that monitors various factory facilities by deploying sensor network at a working place which threatens the worker's safety. A sensor node reports its sensing data like as temperature and humidity to monitor facilities to a sink node. And the server which is connect to the sink node gathers and provides information by user interface. In addition, digital data which are generated at a work place can be transferred via the sensor network to increase the efficiency of works. The proposed sensor network provides the convenience of working, since it is deployed at a garbage collection company to monitor a temperature and humidity of garbage and to transmit data about the weight of trucks which enters the company.

  • PDF

New Design of a Permanent Magnet Linear Synchronous Motor for Seamless Movement of Multiple Passive Carriers (다수의 수동형 캐리어를 연속 이송시킬 수 있는 새로운 영구자석 선형동기전동기의 설계)

  • Lee, Ki-Chang;Kim, Min-Tae;Song, Eui-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.456-463
    • /
    • 2015
  • Nowadays, small quantity batch production, which is so-called a flexible manufacturing system, is a major trend in the modern factory automation industry. The demands for new transportation system are increased gradually, with which multiple passive carriers carrying materials and semi-products are precisely and individually controlled along a single closed rail. Thus, a new type of permanent magnet linear synchronous motor (PMLSM), which consists of state coils on a single rail and PM movers as many as carriers, is proposed in this paper. The rail can be segmented as modules with pairs of coils and a current amplifier, which makes the transportation system simple; therefore, the rail can be easily extended and repaired. A design method of the new PMLSM with a single carrier is proposed, which can be thought as a new version of PMLSM, a coil-segmented coreless PMLSM (CS-CLPMLSM). Experimental setup for it is made, and propulsion results show that with the help of a new effective coil selection and switching algorithms, the conventional current-based vector control is sufficient to fulfill the position and velocity control of the new PMLSM. The proposed PMLSM is expected to fulfill seamless servo-control of multiple carriers also in process line, such as a new generation of flat panel display manufacturing line.

Experimental Set-up for AC Loss in Small Scale HTS Manget by using Calorimetric Method (열량법을 이용한 소용량급 고온초전도 마그넷의 교류손실 측정)

  • Park, Sei-Woong;Jang, Dae-Hee;Kang, Hyoung-Ku;Bae, Duck-Kweon;Kim, Tae-Jung;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1315-1317
    • /
    • 2005
  • Generally, the high Tc superconductor(HTS) doesn't generate any loss in DC condition, but generate considerable loss in AC condition. Until now AC loss in superconductor has been researched on measuring method of short sample by using electrical method and magnetization method. But it is not easy to estimate AC loss in high class magnet system with results of measuring AC Joss in short sample. In this paper, we carry out research on measuring method by using calorimetric method used in measuring AC loss in high class magnet system. We make the inductive and non-inductive superconducting magnet and measure the generated AC loss, then we compare the measured results with the calculated results using Norris equation. This measuring method of AC loss using calorimetric method can measure not only AC loss in superconducting magnet but losses in conducting, radiant and low temperature. Consequently it is thought that efficient design and fabrication of superconducting magnet system will be possible by means of AC loss measurement method using calorimetric method.

  • PDF

3D Simulation Study to Develop Automated System for Robotic Application in Food Sorting and Packaging Processes (식품계량 및 포장 공정 로봇 적용 자동화 시스템 개발을 위한 3D 시뮬레이션 연구)

  • Seunghoon Baek;Seung Eel Oh;Ki Hyun Kwon;Tae Hyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.230-238
    • /
    • 2023
  • Small and medium-sized food manufacturing enterprises are largely reliant on manual labor, from inputting raw materials to palletizing the final product. Recently, there has been a trend toward smartness and digitization through the implementation of robotics and sensor data technology. In this study, we examined the effectiveness of improvement through 3D simulation on two repetitive work processes within a food manufacturing company. These processes involve workers whose speed cannot match the capacity of the applied equipment. Two manual processes were selected: the weighing and packing process performed by workers after skewer assembly, and the manual batch process of counting randomly delivered frozen foods, packing (both internal and external), and palletizing. The production volume, utilization rate, and number of workers were chosen as verification indicators. As a result of the simulation for improving the 3D process, production increased by 13.5% and 56.8% compared to the existing process, respectively. This was particularly evident in the process of applying palletizing robots. In both processes, as the utilization rate and number of input workers decreased, robots could replace tasks with high worker fatigue, thereby reducing work overload. This study demonstrates the potential to visually compare the process flow improvement using 3D simulations and confirms the possibility of pre-validation for improvement.

A Study on Failure Diagnosis System for a Hydraulic Pump in Injection Molding Machinery Using Vibration Analysis (진동 분석을 이용한 사출성형기 유압펌프 결함 진단 시스템에 관한 연구)

  • Kim, Taehyun;Jeon, Yongho;Lee, Moon Gu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.343-348
    • /
    • 2013
  • In line with the advances in factory automation, various pieces of equipment are now operated in batch processes controlled by computers. However, many kinds of faults can occur in complicated and large systems, which can result in low productivity and economic loss. The reliability and safety of systems have been studied because of the difficulty of determining the severity and location of faults. Therefore, it is necessary to detect and diagnose such faults in order to guarantee the reliability and safety of the equipment. In this paper, a diagnosis method for the ball bearings of a hydraulic pump is applied using a vibration signal for the maintenance of injection molding equipment. The bearings' defects are selected as a main failure mode through a failure mode and effect analysis (FMEA). Usually, there are nonlinear and impulse components of vibration in a ball bearing with faults. For the effective fault diagnosis of a ball bearing, nonlinear diagnostic methods and time-frequency analysis are applied, in addition to the methods currently used, such as power spectrum, time series analysis, and statistical methods. As a result of this study, a failure diagnosis system is provided that is useful even for non-experts. This is a condition-based method that makes it possible to resolve problems in a timely and economical way, in contrast to the prior method, which required regular but wasteful maintenance based on the experience of expensive external experts.

Machine Learning based on Approach for Classification of Abnormal Data in Shop-floor (제조 현장의 비정상 데이터 분류를 위한 기계학습 기반 접근 방안 연구)

  • Shin, Hyun-Juni;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2037-2042
    • /
    • 2017
  • The manufacturing facility is generally operated by a pre-set program under the existing factory automation system. On the other hand, the manufacturing facility must decide how to operate autonomously in Industry 4.0. Determining the operation mode of the production facility itself means, for example, that it detects the abnormality such as the deterioration of the facility at the shop-floor, prediction of the occurrence of the problem, detection of the defect of the product, In this paper, we propose a manufacturing process modeling using a queue for detection of manufacturing process abnormalities at the shop-floor, and detect abnormalities in the modeling using SVM, one of the machine learning techniques. The queue was used for M / D / 1 and the conveyor belt manufacturing system was modeled based on ${\mu}$, ${\lambda}$, and ${\rho}$. SVM was used to detect anomalous signs through changes in ${\rho}$.

A Study on the User Interface of Web-based Flexible Manufacturing System (웹기반 유연 생산시스템 사용자 인터페이스)

  • PARK JE-WOONG;KIM WON-JUNG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.68-72
    • /
    • 2004
  • A practical method to investigate the user interface of web based Flexible Manufacturing System(FMS) on the internet environment is established. Because the industrial FMS controller requires a lot of gadget, such as switch, dial, button, etc., for actual work-site flexible operation sufficiently, the user interface of the controller is significantly complex. The support for operational convenience of FMS controller can increase productivity and efficiency of the user, operational personnel of FMS. While most FMS provide their application programming interface(API) and graphical user interface(GUI) with adequate mechanism itself when used in stand alone, there is increasing demand for FMS that can operate with the intuitional user interface find virtual reality(V/R) environment. This thesis considers the intuitional user interface of Web-based FMS first, and from this, goes a step further, improves as virtual reality environment of FMS on the internet environments by using the feature based modeling technique approach and cartoon rendering. The feature-based modeling technique approach is applied to FMS line which is consist of facilities such as machining center, CNC lathe, autonomous guided vehicle, rail guided vehicle, and various controllers. In this study, the FMS established the intuitional user interface is able to obtain not only the operational convenience but also the enough productivity and significant efficiency.

  • PDF