• Title/Summary/Keyword: Facial segmentation

Search Result 47, Processing Time 0.024 seconds

Facial Features and Motion Recovery using multi-modal information and Paraperspective Camera Model (다양한 형식의 얼굴정보와 준원근 카메라 모델해석을 이용한 얼굴 특징점 및 움직임 복원)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.563-570
    • /
    • 2002
  • Robust extraction of 3D facial features and global motion information from 2D image sequence for the MPEG-4 SNHC face model encoding is described. The facial regions are detected from image sequence using multi-modal fusion technique that combines range, color and motion information. 23 facial features among the MPEG-4 FDP (Face Definition Parameters) are extracted automatically inside the facial region using color transform (GSCD, BWCD) and morphological processing. The extracted facial features are used to recover the 3D shape and global motion of the object using paraperspective camera model and SVD (Singular Value Decomposition) factorization method. A 3D synthetic object is designed and tested to show the performance of proposed algorithm. The recovered 3D motion information is transformed into global motion parameters of FAP (Face Animation Parameters) of the MPEG-4 to synchronize a generic face model with a real face.

Face Detection by Eye Detection with Progressive Thresholding

  • Jung, Ji-Moon;Kim, Tae-Chul;Wie, Eun-Young;Nam, Ki-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1689-1694
    • /
    • 2005
  • Face detection plays an important role in face recognition, video surveillance, and human computer interface. In this paper, we present a face detection system using eye detection with progressive thresholding from a digital camera. The face candidate is detected by using skin color segmentation in the YCbCr color space. The face candidates are verified by detecting the eyes that is located by iterative thresholding and correlation coefficients. Preprocessing includes histogram equalization, log transformation, and gray-scale morphology for the emphasized eyes image. The distance of the eye candidate points generated by the progressive increasing threshold value is employed to extract the facial region. The process of the face detection is repeated by using the increasing threshold value. Experimental results show that more enhanced face detection in real time.

  • PDF

A Study on The Facial Image Segmentation using Haar Wavelet Transform (Haar Wavelet Transform을 적용한 얼굴영상 분할에 관한 연구)

  • 김장원;구원모;김창석
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.457-460
    • /
    • 2000
  • 본 연구는 HWT를 이용하여 인체상반신 영상에서 얼굴부위만을 분할하기 위한 알고리즘을 제안하였다. 제안한 알고리즘은 배경을 제거하기 위하여 인체 상반신영상을 2치화 영상으로 만들고, HWT를 적용하여 평균영상과 복원영상에서 고립점, 돌출부위, 경계중복점을 제거한 후 세선화과정을 통하여 경계검출을 수행한다. 다음으로 얼굴부위의 단순경계만을 갖는 마스크를 만들고, 원영상에 마스킹하여 효과적으로 얼굴부위만을 분할한다.

  • PDF

Makeup transfer by applying a loss function based on facial segmentation combining edge with color information (에지와 컬러 정보를 결합한 안면 분할 기반의 손실 함수를 적용한 메이크업 변환)

  • Lim, So-hyun;Chun, Jun-chul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.35-43
    • /
    • 2022
  • Makeup is the most common way to improve a person's appearance. However, since makeup styles are very diverse, there are many time and cost problems for an individual to apply makeup directly to himself/herself.. Accordingly, the need for makeup automation is increasing. Makeup transfer is being studied for makeup automation. Makeup transfer is a field of applying makeup style to a face image without makeup. Makeup transfer can be divided into a traditional image processing-based method and a deep learning-based method. In particular, in deep learning-based methods, many studies based on Generative Adversarial Networks have been performed. However, both methods have disadvantages in that the resulting image is unnatural, the result of makeup conversion is not clear, and it is smeared or heavily influenced by the makeup style face image. In order to express the clear boundary of makeup and to alleviate the influence of makeup style facial images, this study divides the makeup area and calculates the loss function using HoG (Histogram of Gradient). HoG is a method of extracting image features through the size and directionality of edges present in the image. Through this, we propose a makeup transfer network that performs robust learning on edges.By comparing the image generated through the proposed model with the image generated through BeautyGAN used as the base model, it was confirmed that the performance of the model proposed in this study was superior, and the method of using facial information that can be additionally presented as a future study.

ID Face Detection Robust to Color Degradation and Partial Veiling (색열화 및 부분 은폐에 강인한 ID얼굴 검지)

  • Kim Dae Sung;Kim Nam Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • In this paper, we present an identificable face (n face) detection method robust to color degradation and partial veiling. This method is composed of three parts: segmentation of face candidate regions, extraction of face candidate windows, and decision of veiling. In the segmentation of face candidate regions, face candidate regions are detected by finding skin color regions and facial components such as eyes, a nose and a mouth, which may have degraded colors, from an input image. In the extraction of face candidate windows, face candidate windows which have high potentials of faces are extracted in face candidate regions. In the decision of veiling, using an eigenface method, a face candidate window whose similarity with eigenfaces is maximum is determined and whether facial components of the face candidate window are veiled or not is determined in the similar way. Experimental results show that the proposed method yields better the detection rate by about $11.4\%$ in test DB containing color-degraded faces and veiled ones than a conventional method without considering color degradation and partial veiling.

Adaptive Skin Color Segmentation in a Single Image using Image Feedback (영상 피드백을 이용한 단일 영상에서의 적응적 피부색 검출)

  • Do, Jun-Hyeong;Kim, Keun-Ho;Kim, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.112-118
    • /
    • 2009
  • Skin color segmentation techniques have been widely utilized for face/hand detection and tracking in many applications such as a diagnosis system using facial information, human-robot interaction, an image retrieval system. In case of a video image, it is common that the skin color model for a target is updated every frame for the robust target tracking against illumination change. As for a single image, however, most of studies employ a fixed skin color model which may result in low detection rate or high false positive errors. In this paper, we propose a novel method for effective skin color segmentation in a single image, which modifies the conditions for skin color segmentation iteratively by the image feedback of segmented skin color region in a given image.

A Robust Face Detection Method Based on Skin Color and Edges

  • Ghimire, Deepak;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.141-156
    • /
    • 2013
  • In this paper we propose a method to detect human faces in color images. Many existing systems use a window-based classifier that scans the entire image for the presence of the human face and such systems suffers from scale variation, pose variation, illumination changes, etc. Here, we propose a lighting insensitive face detection method based upon the edge and skin tone information of the input color image. First, image enhancement is performed, especially if the image is acquired from an unconstrained illumination condition. Next, skin segmentation in YCbCr and RGB space is conducted. The result of skin segmentation is refined using the skin tone percentage index method. The edges of the input image are combined with the skin tone image to separate all non-face regions from candidate faces. Candidate verification using primitive shape features of the face is applied to decide which of the candidate regions corresponds to a face. The advantage of the proposed method is that it can detect faces that are of different sizes, in different poses, and that are making different expressions under unconstrained illumination conditions.

Optimization of Deep Learning Model Based on Genetic Algorithm for Facial Expression Recognition (얼굴 표정 인식을 위한 유전자 알고리즘 기반 심층학습 모델 최적화)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.85-92
    • /
    • 2020
  • Deep learning shows outstanding performance in image and video analysis, such as object classification, object detection and semantic segmentation. In this paper, it is analyzed that the performances of deep learning models can be affected by characteristics of train dataset. It is proposed as a method for selecting activation function and optimization algorithm of deep learning to classify facial expression. Classification performances are compared and analyzed by applying various algorithms of each component of deep learning model for CK+, MMI, and KDEF datasets. As results of simulation, it is shown that genetic algorithm can be an effective solution for optimizing components of deep learning model.

Eyebrow Detection Algorithm Using the Histogram Analysis (히스토그램 분석을 이용한 눈썹 검출 알고리즘)

  • 이강호
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.46-51
    • /
    • 2002
  • In this paper, I proposed a eyebrow detection algorithm in human face, that is important element in facial recognition. The proposed algorithm consists of four processes: face region detection using color region segmentation. eye detection by template matching, eyebrow candidate region detection in detected eye region, and eyebrow detection by thresholding using the modified histogram that gets luminance value in the candidate region. The test results show that the proposed algorithm can detect eyebrow region very effectively in facial image.

  • PDF

Detection of eye using optimal edge technique and intensity information (눈 영역에 적합한 에지 추출과 밝기값 정보를 이용한 눈 검출)

  • Mun, Won-Ho;Choi, Yeon-Seok;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.196-199
    • /
    • 2010
  • The human eyes are important facial landmarks for image normalization due to their relatively constant interocular distance. This paper introduces a novel approach for the eye detection task using optimal segmentation method for eye representation. The method consists of three steps: (1)edge extraction method that can be used to accurately extract eye region from the gray-scale face image, (2)extraction of eye region using labeling method, (3)eye localization based on intensity information. Experimental results show that a correct eye detection rate of 98.9% can be achieved on 2408 FERET images with variations in lighting condition and facial expressions.

  • PDF