International journal of advanced smart convergence
/
v.8
no.2
/
pp.162-169
/
2019
Facial rigging technology has been developing more and more since the 21st century. Facial rigging of various methods is still attempted and a technique of capturing the geometry in real time recently also appears. Currently Modern CG is produced image which is hard to distinguish from actual photograph. However, this kind of technology still requires a lot of equipment and cost. The purpose of this study is to perform facial rigging using muscle simulation instead of using such equipment. Original muscle simulations were made primarily for use in the body of a creature. In this study, however, we use muscle simulations for facial rigging to create a more realistic creature-like effect. To do this, we used Ziva Dynamics' Ziva VFX muscle simulation software. We also develop a method to overcome the disadvantages of muscle simulation. Muscle simulation can not be applied in real time and it takes time to simulate. It also takes a long time to work because the complex muscles must be connected. Our study have solved this problem using blendshape and we want to show you how to apply our method to face rig.
This paper describes comparison and analysis of methodology which enables us in order to search the projection technique of optimum for projection in the plane. For this methodology, we applies the high-dimensional facial motion capture data respectively in linear and nonlinear projection techniques. The one core element of the methodology is to applies the high-dimensional facial expression data of frame unit in PCA where is a linear projection technique and Isomap, MDS, CCA, Sammon's Mapping and LLE where are a nonlinear projection techniques. And another is to find out the methodology which distributes in this low-dimensional space, and analyze the result last. For this goal, we calculate the distance between the high-dimensional facial expression frame data of existing. And we distribute it in two-dimensional plane space to maintain the distance relationship between the high-dimensional facial expression frame data of existing like that from the condition which applies linear and nonlinear projection techniques. When comparing the facial expression data which distribute in two-dimensional space and the data of existing, we find out the projection technique to maintain the relationship of distance between the frame data like that in condition of optimum. Finally, this paper compare linear and nonlinear projection techniques to projection high-dimensional facial expression data in low-dimensional space and analyze it. And we find out the projection technique of optimum from it.
This paper presents a method that controls facial expression in realtime of 3D avatar by having the user select a sequence of facial expressions in the space of facial expressions. The space of expression is created from about 2400 frames of facial expressions. To represent the state of each expression, we use the distance matrix that represents the distances between pairs of feature points on the face. The set of distance matrices is used as the space of expressions. Facial expression of 3D avatar is controled in real time as the user navigates the space. To help this process, we visualized the space of expressions in 2D space by using the Principal Component Analysis(PCA) projection. To see how effective this system is, we had users control facial expressions of 3D avatar by using the system. This paper evaluates the results.
Journal of the Korea Institute of Information and Communication Engineering
/
v.9
no.1
/
pp.117-122
/
2005
This paper proposes an algorithm for Facial Characteristic Point(FCP) extraction. The FCP plays an important role in expression representation for face animation, avatar mimic or facial expression recognition. Conventional algorithms extract the FCP with an expensive motion capture device or by using markers, which give an inconvenience or a psychological load to experimental person. However, the proposed algorithm solves the problems by using only image processing. For the efficient FCP extraction, we analyze and improve the conventional algorithms detecting facial components, which are basis of the FCP extraction.
Park, Kwang-Hyun;Kim, Dae-Jin;Hong, Ji- Man;Jeong, Young-Sook;Choi, Byoung-Wook
The Journal of Korea Robotics Society
/
v.4
no.3
/
pp.192-200
/
2009
In this paper, we report the progress in the development of performance evaluation method for detection algorithms of face region and facial components. This paper aims to provide a standardized evaluation method for general approach in face recognition application as a potential component in futuristic intelligent robot systems. From an image capture process to the retrieval of face-related information, all the necessary steps are shown with examples.
This paper describes method to distribute much high-dimensional facial expression motion data to 2 dimensional space, and method to create facial expression animation by select expressions that want by realtime as animator navigates this space. In this paper composed expression space using about 2400 facial expression frames. The creation of facial space is ended by decision of shortest distance between any two expressions. The expression space as manifold space expresses approximately distance between two points as following. After define expression state vector that express state of each expression using distance matrix which represent distance between any markers, if two expression adjoin, regard this as approximate about shortest distance between two expressions. So, if adjacency distance is decided between adjacency expressions, connect these adjacency distances and yield shortest distance between any two expression states, use Floyd algorithm for this. To materialize expression space that is high-dimensional space, project on 2 dimensions using Sammon's Mapping. Facial animation create by realtime with animators navigating 2 dimensional space using user interface.
With the development of digital graphics technology, the metaverse has become a significant trend in the content market. The demand for technology that generates high-quality 3D (dimension) models is rapidly increasing. Accordingly, various technical attempts are being made to create high-quality 3D virtual humans represented by digital humans. 3D volumetric capture is spotlighted as a technology that can create a 3D manikin faster and more precisely than the existing 3D model creation method. In this study, we try to analyze 3D high-precision facial production technology based on practical cases of the difficulties in content production and technologies applied in volumetric 3D and 4D model creation. Based on the actual model implementation case through 3D volumetric capture, we considered techniques for 3D virtual human face production and producted a new metahuman using a graphics pipeline for an efficient human facial generation.
This paper describes methodology that enables animators to create the facial expression animations and to control the facial expressions in real-time by reusing motion capture datas. In order to achieve this, we fix a facial expression state expression method to express facial states based on facial motion data. In addition, by distributing facial expressions into intuitive space using LLE algorithm, it is possible to create the animations or to control the expressions in real-time from facial expression space using user interface. In this paper, approximately 2400 facial expression frames are used to generate facial expression space. In addition, by navigating facial expression space projected on the 2-dimensional plane, it is possible to create the animations or to control the expressions of 3-dimensional avatars in real-time by selecting a series of expressions from facial expression space. In order to distribute approximately 2400 facial expression data into intuitional space, there is need to represents the state of each expressions from facial expression frames. In order to achieve this, the distance matrix that presents the distances between pairs of feature points on the faces, is used. In order to distribute this datas, LLE algorithm is used for visualization in 2-dimensional plane. Animators are told to control facial expressions or to create animations when using the user interface of this system. This paper evaluates the results of the experiment.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.41
no.2
/
pp.131-136
/
2004
According to development of media, various information is recorded in media, expression is one during interesting information. Because expression includes of relationship of human inside. Intention of inside is expressed by gesture, but expression has more information. And, expression can manufacture voluntarily, include plan of inside on the man. Also, expression has unique character in a person, have alliance that do division possibility. In this paper, to analyze expression of USB camera animation, wish to detect facial building block. Because characteristic point by person's expression change exists on face component. For component detection, in animation one frame with Capture, grasp facial position, and separate face area, and detect characteristic points of face component.
Kuldeep Gurjar;Surjeet Kumar;Arnav Bhavsar;Kotiba Hamad;Yang-Sae Moon;Dae Ho Yoon
Journal of Information Processing Systems
/
v.20
no.4
/
pp.558-573
/
2024
Considering factors such as illumination, camera quality variations, and background-specific variations, identifying a face using a smartphone-based facial image capture application is challenging. Face Image Quality Assessment refers to the process of taking a face image as input and producing some form of "quality" estimate as an output. Typically, quality assessment techniques use deep learning methods to categorize images. The models used in deep learning are shown as black boxes. This raises the question of the trustworthiness of the models. Several explainability techniques have gained importance in building this trust. Explainability techniques provide visual evidence of the active regions within an image on which the deep learning model makes a prediction. Here, we developed a technique for reliable prediction of facial images before medical analysis and security operations. A combination of gradient-weighted class activation mapping and local interpretable model-agnostic explanations were used to explain the model. This approach has been implemented in the preselection of facial images for skin feature extraction, which is important in critical medical science applications. We demonstrate that the use of combined explanations provides better visual explanations for the model, where both the saliency map and perturbation-based explainability techniques verify predictions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.