시선 위치 추적이란 현재 사용자가 쳐다보고 있는 위치를 컴퓨터 시각 인식 방법을 이용하여 파악하는 연구이다. 일반적으로 사용자가 모니터 상의 한 위치를 쳐다보기 위해서는 얼굴 및 눈동자를 동시에 움직이는 경향이 있다. 기존의 시선 위치 추적 시스템은 사용자의 얼굴 전체를 취득할 수 있는 단 하나의 광각 카메라를 이용하여 사용자의 얼굴 및 눈동자 움직임을 추적하였다. 그러나 이러한 경우, 광각 카메라 내에 포함된 눈동자 영상의 해상도가 많이 떨어져서 사용자의 눈동자 움직임을 정확하게 추적하지 못하는 문제점이 있었다. 그러므로 이 논문에서는 얼굴 영상을 취득하기 위한 광각 카메라 및 눈 영역을 확대하여 취득하는 협각 카메라, 즉 2개의 카메라를 이용하여 시선 위치추적 시스템을 구현하였다. 또한, 얼굴의 움직임 시 전체적인 위치가 변화될 눈동자의 움직임을 정확히 추적하기 위해, 협각 카메라에는 광각 카메라에서 추출된 얼굴 특징점의 위치를 기반으로 한 자동 초점 및 자동 상하/좌우 회전 기능이 포함되어 있다. 실험 결과, 얼굴 및 눈동자 움직임에 의한 모니터상의 시선 위치 정확도는 실험자가 눈동자는 고정으로 하고 얼굴만 움직여서 쳐다보는 경우에 약 3.1cm, 흐리고 얼굴 및 눈동자를 같이 움직여서 쳐다보는 경우에 약 3.57cm의 최소 자승 에러성능을 나타냈다. 처리 속도도 Pentium-IV 1.8 GHz에서 약 30ms 이내의 처리 속도를 나타냈다.
시선 위치 추적이란 현재 사용자가 응시하고 있는 위치를 컴퓨터 시각 인식 방법에 의해 파악하는 연구이다. 이러한 시선 위치 추적 기술은 많은 응용 분야를 가지고 있는데, 그 대표적인 예로는 양 손을 사용하지 못하는 심신 장애자를 위한 컴퓨터 인터페이스 및 3차원 시뮬레이터 프로그램에서 사용자의 시선 위치에 따른 화면 제어 등이 있다. 이 논문에서는 적외선 조명이 부착된 단일 카메라를 이용한 컴퓨터 비전 시스템으로 시선 위치 추적 연구를 수행하였다. 사용자의 시선 위치를 파악하기 위해서는 얼굴 특징점의 위치를 추적해야하는데, 이를 위하여 이 논문에서는 적외선 기반 카메라와 SVM(Support Vector Machine) 알고리즘을 사용하였다. 사용자가 모니터상의 임의의 지점을 쳐다볼 때 얼굴 특징점의 3차원 위치는 3차원 움식임량 추정(3D motion estimation) 및 아핀 변환(affine transformation)에 의해 계산되어 질 수 있다. 얼굴 특징점의 변화된 3차원 위치가 계산되면, 이로부터 3개 이상의 얼굴 특징점으로부터 생성되는 얼굴 평면 및 얼굴 평면의 법선 벡터가 구해지게 되며, 이러한 법선 벡터가 모니터 스크린과 만나는 위치가 사용자의 시선위치가 된다. 또한, 이 논문에서는 보다 정확한 시선 위치를 파악하기 위하여 사용자의 눈동자 움직임을 추적하였으면 이를 위하여 신경망(다층 퍼셉트론)을 사용하였다. 실험 결과, 얼굴 및 눈동자 움직임에 의한 모니터상의 시선 위치 정확도는 약 4.8㎝의 최소 자승 에러성능을 나타냈다.
사용자의 시선 위치를 파악하는 연구는 많은 응용분야를 가지고 지난 몇년간 눈부시게 발전되어 왔다. 기존의 대부분 연구에서는 영상 처리 방법만에 의존하여 시선 위치 추적 연구를 수행하였기 때문에 처리 속도도 늦고 많은 사용 제약을 가지는 문제점이 있었다. 이 논문에서는 적외선 조명이 부착된 단일 카메라를 이용한 컴퓨터 비전 시스템으로 시선 위치 추적 연구를 수행하였다. 사용자의 시선 위치를 파악하기 위해서는 얼굴 특징점의 위치를 추적해야하는데, 이를 위하여 이 논문에서는 적의선 기반 카메라와 SVM(Support Vector Machine) 알고리즘을 사용하였다. 사용자가 모니터상의 임의의 지점을 쳐다볼 때 얼굴 특징점의 3차원 위치는 3차원 움직임량 추정(3D motion estimation) 및 아핀 변환(affine transformation)에 의해 계산되어 질 수 있다. 얼굴 특징점의 변화된 3차원 위치가 계산되면. 이로부터 3개 이상의 얼굴 특징점으로부터 생성되는 얼굴 평면 및 얼굴 평면의 법선 벡터가 구해지게 되며, 이러한 법선 백터가 모니터 스크린과 만나는 위치가 사용자의 시선위치가 된다. 또한. 이 논문에서는 보다 정확한 시선 위치를 파악하기 위하여 사용자의 눈동자 움직임을 추적하였으며 이를 위하여 신경망(다층 퍼셉트론)을 사용하였다. 실험 결과, 얼굴 및 눈동자 움직임에 의한 모니터상의 시선 위치 정확도는 약 4.2cm의 최소 자승 에러성능을 나타냈다.
최근에 휴먼 컴퓨터 인터페이스 분야에서 사용자의 시선 위치를 파악하여 더욱 편리한 입력장치를 구축하고자 하는 연구가 많이 진행되고 있다. 하지만 복잡한 하드웨어 구성으로 제품의 가격이 매우 비싸고, 까다로운 사용자 캘리브레이션 과정으로 인해 시스템의 사용에 어려움을 겪는다. 본 논문에서는 HMD(Head Mounted Display)에 USB 카메라와 적외선을 반사시키는 hot-mirror와 적외선 조명을 이용한 시선 추적 모듈을 부착하고, 이를 통해 획득한 눈 영상의 2차원적인 분석과 간단한 사용자 캘리브레이션 과정을 통해 시선 위치를 파악하는 방법을 제안한다. HMD는 사용자의 얼굴 움직임과 함께 움직이므로, 얼굴움직임에 영향을 받지 않는 시선 추적 시스템을 구현할 수 있다. 또한, 시선 추적 시스템을 3차원 1인칭 슈팅 게임에 적응하여, 캐릭터의 시선 방향을 조정하고, 적 캐릭터를 조준하여 사격이 가능하도록 하여, 게임의 몰입감과 흥미성을 높일 수 있게 하였다. 실험 결과, 한 대의 데스크톱 컴퓨터 환경에서 게임과 시선 추적 시스템이 실시간으로 동작 가능했으며, 약 $0.88^{\circ}$의 시선 위치 추출 오차를 보였다. 또한 3차원 1인칭 슈팅게임에서 일반 마우스의 역할을 시선 추적 시스템이 문제없이 대신할 수 있음을 확인하였다.
이 논문에서는 컴퓨터 시각 인식 방법에 의해 모니터 상에 사용자가 쳐다보고 있는 시선 위치를 파악하기 위한 새롭고 실용적인 방법을 제안한다. 일반적으로 사용자가 모니터 상의 한 위치를 쳐다보기 위해서는 얼굴 및 눈동자를 동시에 움직이는 경향이 있다. 기존의 시선 위치 추적 시스템은 사용자의 얼굴 전체를 취득할 수 있는 단 하나의 광각 카메라 시스템을 주로 많이 이용하였다. 그러나 이러한 경우 영상의 해상도가 많이 떨어져서 사용자의 눈동자 움직임을 정확하게 추적하기 어려운 문제점이 있다. 그러므로 이 논문에서는 광각 카메라(얼굴의 움직임에 의한 시선 위치 추적용) 및 눈 영역을 확대하여 취득하는 협각 카메라(눈동자 움직임에 의한 시선 위치 추적용), 즉 이중 카메라를 이용하여 시선 위치 추적 시스템을 구현하였다. 얼굴의 움직임 시 전체적인 위치가 변화될 눈동자의 움직임을 정확히 추적하기 위해, 협각 카메라에는 광각 카메라로부터 추출된 눈 특징점의 위치를 기반으로 한 자동 초점 및 자동 상하/좌우 회전 기능이 포함되어 있으며, 눈 특징점을 보다 빠르고 정확하게 추출하기 위해 이중 적외선 조명을 사용하였다. 실험 결과, 본 논문에서는 실시간으로 동작하는 시선 위치 추적 시스템을 구현할 수 있었으며, 이때 얼굴 및 눈동자 움직임을 모두 고려하여 계산한 모니터상의 시선 위치 정확도는 약 3.44cm의 최소 자승 에러성능을 나타냈다.
본 논문에서는 운전자 피로 감지를 위한 얼굴 동작을 효과적으로 인식하는 방법을 제안하고자 한다. 얼굴 동작은 얼굴 표정, 얼굴 자세, 시선, 주름 같은 얼굴 특징으로 나타난다. 그러나 얼굴 특징으로 하나의 동작 상태를 뚜렷이 구분한다는 것은 대단히 어려운 문제이다. 왜냐하면 사람의 동작은 복합적이며 그 동작을 표현하는 얼굴은 충분한 정보를 제공하기에는 모호성을 갖기 때문이다. 제안된 얼굴 동작 인식 시스템은 먼저 적외선 카메라로 눈 검출, 머리 방향 추정, 머리 움직임 추정, 얼굴 추적과 주름 검출과 같은 얼굴 특징 등을 감지하고 획득한 특징을 FACS의 AU로 나타낸다. 획득한 AU를 근간으로 동적 베이지안 네트워크를 통하여 각 상태가 일어날 확률을 추론한다.
본 논문에서는 새로운 실시간 시선 추적 방식을 제안하고자한다. 기존의 시선추적 방식은 사용자가 머리를 조금만 움직여도 잘못된 결과를 얻을 수가 있었고 각각의 사용자에 대하여 교정 과정을 수행할 필요가 있었다. 제안된 시선 추적 방법은 적외선 조명과 Generalized Regression Neural Networks(GRNN)를 이용함으로써 교정 과정 없이 머리의 움직임이 큰 경우에도 견실하고 정확한 시선 추적을 가능하도록 하였고 매핑 기능을 일반화함으로써 각각의 교정과정을 생략 할 수 있게 하여 학습에 참여하지 않은 다른 사용자도 시선 추적을 가능케 하였다. 실험결과 얼굴의 움직임이 있는 경우에는 평균 90%, 다른 사용자에 대해서는 평균 85%의 시선 추적 결과를 나타내었다.
비접촉식 시선추적 기술은 인간과 컴퓨터간의 인터페이스로서 장애가 있는 사람들에게 핸즈프리 통신을 제공하며, 최근 코로나 바이러스 등으로 인한 비접촉시스템에도 중요한 역할을 할 것으로 기대된다. 따라서 본 논문에서는 인간 중심의 상호 작용을 위한 상황인식 다중영역 분류기 및 ASSL 알고리즘을 기반으로 한 사용자 인터페이스 기술을 개발한다. 이전의 AdaBoost 알고리즘은 안구 특징 사이의 공간적 맥락 관계를 이용할 수 없기 때문에 눈의 커서 포인팅 추정을 위한 안면 추적에서 충분히 신뢰할 수 있는 성능을 제공 할 수 없다. 따라서 본 논문에서는 효율적인 비접촉식 시선 추적 및 마우스 구현을 위한 눈 영역의 상황기반 AdaBoost 다중 영역 분류기를 제시한다. 제안된 방식은 여러 시선 기능을 감지, 추적 및 집계하여 시선을 평가하고 온 스크린 커서 기반의 능동 및 반 감독 학습을 조정한다. 이는 눈 위치에 성공적으로 사용되었으며 눈 특징을 감지하고 추적하는 데에도 사용할 수 있다. 사용자의 시선을 따라 컴퓨터 커서를 제어하며 칼만 필터를 이용하여 실시간으로 추적하며, 가우시안 모델링을 적용함으로써 후처리하였다. Fits law에 의해 실험하였으며, 랜덤하게 대상객체를 생성하여 실시간으로 시선추적성능을 분석하였다. 제안하는 상황인식을 기반 인식기를 통하여 비접촉 인터페이스로서의 활용이 높아질 것이다.
본 논문은 얼굴에서 왼쪽 눈, 오른쪽 눈, 입, 코의 위치를 검출하고 POSIT(Pose from Orthography and Scaling with ITterations) 알고리즘을 이용하여 3차원 객체의 위치와 방향을 알아내는 방법을 제안한다. 왼쪽, 오른쪽 눈을 검출하는 단계에서는 사람의 얼굴에서 눈이 가지는 위상학적 특징과 형태학적 특징을 이용한다. 위상학적 특징을 기반으로 눈의 대략적인 위치를 구하고 형태학적인 특징을 이용하여 눈동자를 검출한다. 4개의 특징점 검출 후 POSTIT를 이용하여 얼굴의 회전 정도를 찾아 눈의 시선 방향을 찾았다.
본 논문에서는 기존의 문제점인 얼굴 움직임이 있을 시 시선 식별이 어려운 점과 사용자에 따른 교정작업이 필요하다는 점을 해결하고자 새로운 시선 식별 시스템을 제안한다. Kalman필터를 사용하여 현재 머리의 위치정보를 이용하여 미래위치를 추정하였고 얼굴의 진위 여부를 판단하기 위해서 얼굴의 특징요소를 구조적 정보와 비교적 처리시간이 빠른 수평, 수직 히스토그램 분석법을 이용하여 얼굴의 요소를 검출한다. 그리고 적외선 조명기를 구성하여 밝은 동공효과를 얻어 동공을 실시간으로 검출, 추적하였고 동공-글린트 벡터를 추출한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.