얼굴 분석은 얼굴 인식 머리 움직임과 얼굴 표정을 이용한 인간과 컴퓨터사이의 인터페이스, 모델 기반 코딩, 가상현실 등 많은 응용 분야에서 유용하게 활용된다. 이러한 응용 분야에서는 얼굴의 특징점들을 정확하게 추출해야 한다. 본 논문에서는 눈, 눈썹, 입술의 코너와 같은 얼굴 특징을 자동으로 추출하는 방법을 제안한다. 먼저, 입력 영상으로부터 AdaBoost 기반의 객체 검출 기법을 이용하여 얼굴 영역을 추출한다. 그 다음에는 계곡 에너지. 명도 에너지, 경계선 에너지의 세 가지 특징 에너지를 계산하여 결합한다. 구해진 특징 에너지 영상에 대하여 에너지 값이 큰 수평 방향향의 사각형을 탐색함으로써 특징 영역을 검출한다. 마지막으로 특징 영역의 가장자리 부분에서 코너 검출 알고리즘을 적용함으로써 눈, 눈썹, 입술의 코너를 검출한다. 본 논문에서 제안된 얼굴 특징 추출 방법은 세 가지의 특징 에너지를 결합하여 사용하고 계곡 에너지와 명도 에너지의 계산이 조명 변화에 적응적인 특성을 갖도록 함으로써, 다양한 환경 조건하에서 견고하게 얼굴 특징을 추출할 수 있다.
Influence of gelatinase on basement membrane (BM) structure was investigated by using a skin equivalent (SE) model. The results showed that (1) gelatinase produced by cells degraded the BM and (2) the addition of matrix metalloproteinase-specific inhibitor to the SE medium accelerated the formation of BM structure, indicating that gelatinase is involved in BM impairment. The activity of gelatinase was also studied in healthy human facial skin tissues. The result of in situ zymography revealed gelatinase activity around the basal layer of the epidermis, where BM integrity was severely compromised. Therefore, this enzyme was suggested to be associated with BM decomposition in human facial skin. To assess the behavior of gelatinase in stratum corneum (SC) non-invasively, an immunological study was performed. Since positive immunostaining of pro-gelatinase B was observed in SC stripped from sun-exposed skin, whereas no positive staining detected in SC of non-irradiated skin, gelatinase in the epidermis could be non-invasively detected by measuring gelatinase in SC. Gelatinase in SC of healthy female volunteers was monitored using a special film that sensitively and conveniently detects gelatinase. Ninetr percent of SC from facial skin (l00 women, 40's-50's) was gelatinase-positive. On the other hand, SC from non-irradiated skin was negative. These results strongly suggest that (1) gelatinase is constantly produced in the facial epidermis of most middle-aged woman during their daily life, and (2) the enzyme might be involved in the aging-related degeneration of both BM and the matrix fibers of the upper layer of the dermis, acting as a very important aging factor. Strong inhibitory activity against gelatinase was found in turmeric extract and identified curcumin as the major ingredient. Topical application of cream containing turmeric extract significantly decreased the number of gelatinase-positive SC clusters in human facial skins. These results indicated that turmeric is an effective ingredient to prevent skin from photo aging by suppressing chlonically upregulated gelatinase activity by UV and to improve skin condition.
감성 인식 기술은 사회의 여러 분야에서 요구되고 있는 필요한 기술이지만, 인식 과정의 어려움으로 인해 풀리지 않는 문제로 낡아있다. 특히 얼굴 영상을 이용한 감정 인식 기술에서 얼굴 영상을 분석하는 기술 개발이 필요하다. 하지만 얼굴분석을 어려움으로 인해 많은 연구가 진행 중이다. 된 논문에서는 감정 인식을 위한 얼굴 영상 분석 알고리즘을 제안한다. 제안된 얼굴 영상 분석 알고리즘은 얼굴 영역 추출 알고리즘과 얼굴 구성 요소 추출 알고리즘으로 구성된다. 얼굴 영역 추출 알고리즘은 다양한 조명 조건에서도 강인하게 얼굴 영역을 추출할 수 있는 퍼지 색상 필터를 사용한 방법을 제안하였다. 또한 얼굴 구성 요소 추출 알고리즘에서는 가상 얼굴 모형을 이용함으로써 보다 정확하고 빠른 얼굴 구성 요소 추출이 가능하게 하였다. 최종적으로 모의실험을 통해 각 알고리즘들의 수행 과정을 살펴보았으며 그 성능을 평가하였다.
사이버 공간 내에서 텍스트나 영상 이외에 보조적인 통신 수단으로써, 아바타 통신을 이용할 수 있다. 실시간 아바타 영상 통신을 위하여, 전체 영상이나 압축 영상을 전송하는 대신에 아바타의 애니메이션 파라미터(팔의 동작 및 제스처를 위한 각도 또는 얼굴 표정을 위한 파라미터 등)만을 전송하는 지적 통신방식을 이용하기도 한다. 본 논문에서는 팔, 다리 등의 파라메타 등의 몸의 동적 움직임을 보조할 수 있는 수단으로써, 송신자의 감정을 표현할 수 있는 아바타의 얼굴 표정 생성에 대하여 제안한다. 얼굴 표정은 AU(Action Unit)에 의하여 표현할 수 있으며, 여기에서는 모양과 구조가 다른 아바타 모델에서 표정을 생성하기 위한 AU를 찾아내는 방법을 제안한다. 그리고, 감정 표현의 극대화를 위하여 얼굴 표현의 효율을 위하여, 눈썹, 눈, 코, 입에 대한 코믹 스타일을 가지는 아바타 모델을 제안한다. 또한, 얼굴 표정 합성을 위한 파라메타들도 제시하도록 한다.
Recently, there have been a lot of researches on the whole face replacement system, but it is not easy to obtain stable results due to various attitudes, angles and facial diversity. To produce a natural synthesis result when replacing the face shown in the video image, technologies such as face area detection, feature extraction, face alignment, face area segmentation, 3D attitude adjustment and facial transposition should all operate at a precise level. And each technology must be able to be interdependently combined. The results of our analysis show that the difficulty of implementing the technology and contribution to the system in facial replacement technology has increased in facial feature point extraction and facial alignment technology. On the other hand, the difficulty of the facial transposition technique and the three-dimensional posture adjustment technique were low, but showed the need for development. In this paper, we propose four facial replacement models such as 2-D Faceswap, OpenPose, Deekfake, and Cycle GAN, which are suitable for the Cox platform. These models have the following features; i.e. these models include a suitable model for front face pose image conversion, face pose image with active body movement, and face movement with right and left side by 15 degrees, Generative Adversarial Network.
This paper proposes a deep learning method for estimating the heart rate from facial videos. Our proposed method estimates remote photoplethysmography (rPPG) signals to predict the heart rate. Although there have been proposed several methods for estimating rPPG signals, most previous methods can not be utilized in low-power single board computers due to their computational complexity. To address this problem, we construct a lightweight student model and employ a knowledge distillation technique to reduce the performance degradation of a deeper network model. The teacher model consists of 795k parameters, whereas the student model only contains 24k parameters, and therefore, the inference time was reduced with the factor of 10. By distilling the knowledge of the intermediate feature maps of the teacher model, we improved the accuracy of the student model for estimating the heart rate. Experiments were conducted on the UBFC-rPPG dataset to demonstrate the effectiveness of the proposed method. Moreover, we collected our own dataset to verify the accuracy and processing time of the proposed method on a real-world dataset. Experimental results on a NVIDIA Jetson Nano board demonstrate that our proposed method can infer the heart rate in real time with the mean absolute error of 2.5183 bpm.
본 연구에서는 감정을 표현하기 위한 표정 연습을 보조하는 인공지능을 개발하였다. 개발한 인공지능은 서술형 문장과 표정 이미지로 구성된 멀티모달 입력을 심층신경망에 사용하고 서술형 문장에서 예측되는 감정과 표정 이미지에서 예측되는 감정 사이의 유사도를 계산하여 출력하였다. 사용자는 서술형 문장으로 주어진 상황에 맞게 표정을 연습하고 인공지능은 서술형 문장과 사용자의 표정 사이의 유사도를 수치로 출력하여 피드백한다. 표정 이미지에서 감정을 예측하기 위해 ResNet34 구조를 사용하였으며 FER2013 공공데이터를 이용해 훈련하였다. 자연어인 서술형 문장에서 감정을 예측하기 위해 KoBERT 모델을 전이학습 하였으며 AIHub의 감정 분류를 위한 대화 음성 데이터 세트를 사용해 훈련하였다. 표정 이미지에서 감정을 예측하는 심층신경망은 65% 정확도를 달성하여 사람 수준의 감정 분류 능력을 보여주었다. 서술형 문장에서 감정을 예측하는 심층신경망은 90% 정확도를 달성하였다. 감정표현에 문제가 없는 일반인이 개발한 인공지능을 이용해 표정 연습 실험을 수행하여 개발한 인공지능의 성능을 검증하였다.
This paper describes a system for tracking a face in a input video sequence using facial convex hull based facial segmentation and a robust hausdorff distance. The algorithm adapts YCbCr color model for classifying face region by [l]. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, a Robust Hausdorff distance is computed and the best possible displacement is selected. Finally, the previous face model is updated using the displacement t. It is robust to some noises and outliers. We provide an example to illustrate the proposed tracking algorithm in video sequences obtained from CCD camera.
In this paper we propose an emotional expression method using a comic model and special marks for effective sign-language communications. Until now we have investigated to produce more realistic facial and emotional expression. When representing only emotional expression, however, a comic expression could be better than the real picture of a face. The comic face is a comic-style expression model in which almost components except the necessary parts like eyebrows, eyes, nose and mouth are discarded. In the comic model, we can use some special marks for the purpose of emphasizing various emotions. We represent emotional expression using Action Units(AU) of Facial Action Coding System(FACS) and define Special Unit(SU) for emphasizing the emotions. Experimental results show a possibility that the proposed method could be used efficiently for sign-language image communications.
It has been known that there is strong relationship between human voices and the movements of the articulatory facial muscles. In this paper, we utilize this knowledge to implement an automatic speech recognition scheme which uses solely surface electromyogram (EMG) signals. The EMG signals were acquired from three articulatory facial muscles. Preliminary, 10 Korean digits were used as recognition variables. The various feature parameters including filter bank outputs, linear predictive coefficients and cepstrum coefficients were evaluated to find the appropriate parameters for EMG-based speech recognition. The sequence of the EMG signals for each word is modelled by a hidden Markov model (HMM) framework. A continuous word recognition approach was investigated in this work. Hence, the model for each word is obtained by concatenating the subword models and the embedded re-estimation techniques were employed in the training stage. The findings indicate that such a system may have a capacity to recognize speech signals with an accuracy of up to 90%, in case when mel-filter bank output was used as the feature parameters for recognition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.