• 제목/요약/키워드: Facial Image

검색결과 833건 처리시간 0.02초

DCT 계수를 이용한 얼굴 특징 영역의 검출 (Detection of Facial Feature Regionsby Manipulation of DCT's Coefficients)

  • 이부형;류장렬
    • 한국산학기술학회논문지
    • /
    • 제8권2호
    • /
    • pp.267-272
    • /
    • 2007
  • 본 논문에서는 DCT계수의 특성을 이용하여 조명조건이나 얼굴의 크기에 무관하게 얼굴특징영역을 검출하기 위한 새로운 방법을 제안한다. 일반적으로 영상을 DCT변환하면 영상의 에너지가 저주파영역에 집중되는 특성을 가지나 얼굴 특징요소들은 얼굴영상에서 비교적 고주파 성분들을 포함하고 있기 때문에 저주파에 해당되는 DCT계수들의 일부를 제거한 후 역변환을 취하면 얼굴특징영역이 강조된 영상을 얻을 수 있다. 따라서, 본 논문에서는 DCT변환된 영상으로부터 저주파 계수의 일부를 제거하여 얼굴특징요소 후보들을 추출한 후 템플릿을 적용하여 얼굴특징요소 영역을 결정한다. 얼굴특징요소 영역이 결정되면 얼굴특징요소 추출 알고리즘을 적용하여 눈. 코, 입을 구별한다. 제안된 알고리즘을 MIT의CBCL DB와 Yale facedatabase B 에 적용하여 실험하였다. 실험결과 DCT변환된 영상에서 저주파 일부의 계수를 제거한 후 얼굴 특징영역을 검출했을 경우 그렇지 않은 영상보다 영상의 크기와 조명조건의 변화에 무관하게 인식성능이 향상됨을 알 수 있었다.

  • PDF

자가 안면영상 촬영장치 개발 및 검증 (Development and Evaluation of an Self-Operated Face Capturing System)

  • 전영주;도준형;김장웅;김상길;이혜정;이유정;김근호;김종열
    • 한국한의학연구원논문집
    • /
    • 제17권2호
    • /
    • pp.115-120
    • /
    • 2011
  • Objectives : The purpose of this study is to develop an apparatus which can take a facial image by self-operated capturing technique. The user can obtain one's facial image immediately after adjusting facial tilt and focusing distance. The system has been designed for classifying Sasang typology based on facial image. Methods : The system is composed of a Webcam, one-way glass mirror and mini LCD. The Webcam takes a facial image which is displayed on the mini LCD. Then the user can see and adjust to the right position in the real time through the image mirror-reflected from the mini LCD. The optical sensor is used to estimate the proper focusing distance. To verify the performance of the system, 11 characteristic points on the facial image are used and compared with high performance DSLR camera(D700) by applying the coefficient of variance and Bland-Altman Plot. Results : The developed system and D700 show enough agreement with the small coefficient of variance to analyse constitutional types with a facial im mage. However, the result of Bland-Altman plot shows that the width parameters have distortions owing to short focusing distance. Conclusions : The system is expected to be utilized on u-healthcare services for home environment after improving the distortion in the width parameters.

가림이 있는 얼굴 영상의 나이 인식 연구 (A study of age estimation from occluded images)

  • 최성은
    • Journal of Platform Technology
    • /
    • 제10권3호
    • /
    • pp.44-50
    • /
    • 2022
  • 얼굴 영상에서 나이를 인식하는 기술은 여러 응용분야에서 활용되면서 그에 대한 연구가 활발히 진행되고 있다. 다양한 환경에서 촬영된 얼굴 영상은 얼굴의 일부가 가려지는 경우가 많으며 이는 나이 인식 성능에 영향을 미치게 된다. 따라서 본 논문에서는 가림이 있는 얼굴 영상의 나이 인식 성능을 개선하기 위해, Image Extrapolation 기술을 이용하여 가려진 부분을 생성하여 나이를 인식하는 방법을 제안한다. 영상에서의 가림이 나이 인식 성능에 미치는 영향을 확인하기 위해서 마스크 이미지를 적용하여 가림이 있는 얼굴 영상을 생성하였다. 가림에 의해 나이 인식 성능이 저하되는 문제를 해결하기 위해, Image Extrapolation 기술 중 영상의 가장자리를 순회하면서 가려진 부분을 생성하는 SpiralNet 을 사용하여 가려진 부분을 예측하여 생성하고 얼굴 나이 인식에 사용하였다. 실험을 통해 가림이 있는 영상에서 나이 인식 성능이 저하되는 문제가 있고, SpiralNet으로 가림 부분을 생성한 영상으로 나이를 인식하면 나이 인식 성능이 개선되는 것을 확인하였다.

연속 영상에서의 얼굴표정 및 제스처 인식 (Recognizing Human Facial Expressions and Gesture from Image Sequence)

  • 한영환;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권4호
    • /
    • pp.419-425
    • /
    • 1999
  • 본 논문에서는 흑백 동영상을 사용하여 얼굴 표정 및 제스처를 실시간으로 인식하는 시스템을 개발하였다. 얼굴 인식분야에서는 형판 정합법과 얼굴의 기하학적 고찰에 의한 사전지식을 바탕으로 한 방법을 혼합하여 사용하였다. 혼합 방법에 의해 입력영상에서 얼굴 부위만을 제한하였으며, 이 영역에 옵티컬 플로우를 적용하여 얼굴 표정을 인식하였다. 제스처 인식에서는 엔트로피를 분석하여 복잡한 배경영상으로부터 손 영역을 분리하는 방법을 제안하였으며 , 이 방법을 개선하여 손동작에 대한 제스처를 인식하였다. 실험 결과, 입력 영상의 배경에 크게 영향을 받지 않고서도 동일 영상에서 움직임이 큰 부위를 검출하여 얼굴의 표정 및 손 제스처를 실시간적으로 인식할 수 있었다.

  • PDF

모바일 기기에서 조명 변화를 고려한 얼굴 영상 합성 (Facial Image Synthesis Considering Illumination Variations on Mobile Devices)

  • 권지인;이상훈;최수미
    • 한국HCI학회논문지
    • /
    • 제6권1호
    • /
    • pp.21-26
    • /
    • 2011
  • 본 논문은 얼굴 영상을 합성할 때 조명 변화에 강인하도록 조명 보정 기법과 푸아송 영상 처리 기법을 결합한 얼굴 합성 방법을 제시한다. 제시된 방법은 얼굴 영상으로부터 자동적으로 피부 영역을 검출하고, 합성할 부위에서 합성 결과에 영향을 주는 세츄레이션된 부분을 보정한 후 최종적으로 대상 얼굴 영상에 합성하게 된다. 개발된 방법은 카메라가 부착된 모바일 기기에서 촬영된 영상 등에서 자주 발생할 수 있는 조명변화를 보완하여 다양한 얼굴합성 응용 분야에 활용될 수 있다.

  • PDF

PCA와 템플릿 정합을 사용한 눈 및 입 영상 기반 얼굴 표정 인식 (Eye and Mouth Images Based Facial Expressions Recognition Using PCA and Template Matching)

  • 우효정;이슬기;김동우;유성필;안재형
    • 한국콘텐츠학회논문지
    • /
    • 제14권11호
    • /
    • pp.7-15
    • /
    • 2014
  • 본 연구는 PCA와 템플릿 정합을 사용한 얼굴 표정 인식 알고리즘을 제안한다. 먼저 얼굴 영상은 Haar-like feature의 특징 마스크를 사용하여 획득한다. 획득한 얼굴 영상은 눈과 눈썹을 포함하고 있는 얼굴 상위 부분과 입과 턱을 포함하고 있는 얼굴 하위 부분으로 분리하여 얼굴 요소 추출에 용이하게 나눈다. 얼굴 요소 추출은 눈 영상과 입 영상을 추출하는 과정으로 먼저 학습영상으로 PCA를 거쳐 생성된 고유얼굴을 구한다. 고유 얼굴에서 고유 입과 고유 눈을 획득하고, 이를 얼굴 분리 영상과 템플릿 매칭시켜 얼굴요소를 추출한다. 얼굴 요소는 눈과 입이 있으며 두 요소의 기하학적 특징으로 표정을 인식한다. 컴퓨터 모의실험 결과에 따르면 제안한 방법이 기존의 방법보다 추출률이 우수하게 나왔으며, 특히 입 요소의 추출률은 99%에 달하였다. 또 이 얼굴 요소 추출 방법을 표정인식에 적용하였을 때 놀람, 화남, 행복의 3가지 표정의 인식률이 80%를 상회하였다.

가상대학에서 교수자와 학습자간 상호작용을 위한 지식기반형 문자-얼굴동영상 변환 시스템 (Knowledge based Text to Facial Sequence Image System for Interaction of Lecturer and Learner in Cyber Universities)

  • 김형근;박철하
    • 정보처리학회논문지B
    • /
    • 제15B권3호
    • /
    • pp.179-188
    • /
    • 2008
  • 본 논문에서는 가상대학에서 교수자와 학습자간 상호작용을 위한 지식기반형 문자-얼굴동영상 변환(TTFSI : Text to Facial Sequence Image) 시스템에 관해 연구하였다. TTFSI 시스템의 구현을 위해, 한글의 문법적 특징을 기반으로 가상강의에 사용된 자막정보에 립싱크된 얼굴 동영상 합성하기 위하여 자막정보를 음소코드로 변환하는 방법, 음소코드별 입모양의 변형규칙 작성법, 입모양 변형규칙에 의한 얼굴 동영상 합성법을 제안한다. 제안된 방법에서는 한글의 구조분석을 통해 기본 자모의 발음을 나타내는 10개의 대표 입모양과 조음결합에서 나타나는 78개의 혼합 입모양으로 모든 음절의 입모양을 표현하였다. 특히 PC환경에서의 실시간 영상을 합성하기 위해서 매 프레임마다 입모양을 합성하지 않고, DB에서 88개의 해당 입모양을 불러오는 방법을 사용하였다. 제안된 방법의 유용성을 확인하기 위하여 텍스트 정보에 따른 다양한 얼굴 동영상을 합성하였으며, PC환경에서 구현 가능한 TTFSI 시스템을 구축하였다.

Robust Facial Expression Recognition Based on Local Directional Pattern

  • Jabid, Taskeed;Kabir, Md. Hasanul;Chae, Oksam
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.784-794
    • /
    • 2010
  • Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.

신경회로망을 이용한 2D 얼굴근육 파라메터의 자동인식 (Automatic Estimation of 2D Facial Muscle Parameter Using Neural Network)

  • 김동수;남기환;한준희;배철수;권오홍;나상동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 춘계종합학술대회
    • /
    • pp.33-38
    • /
    • 1999
  • 컴퓨터 분야에서 얼굴근육 이미지합성은 살아있는 것 같은 모델을 실현하기 위한 가장 실재적인 접근방법 중의 하나이며, 얼굴근육 모델은 얼굴조직 성분과 근육으로 구성된다. 이 모델에서 얼굴 조직 성분에 영향을 주는 힘(force)은 각 근육의 수축강도로써 계산되어지고, 각 근육 파라메터의 결합은 명확한 얼굴표현으로 결정한다. 또한 각 근육 파라메터는 실험과 샘플 사진과 근육편집기로 생성한 명확한 이미지를 비유하여 에러처리과정을 통해 결정된다. 이 논문에서 신경회로망을 사용한 2D(Two-Dimension) 지시점의 움직임으로부터 얼굴근육의 자동인식 방법을 제안하고자 하며, 얼굴모델을 기반으로 한 물리학적 제한하에 캡처된 이미지에서 정보 흐름과 2D 포인트로부터 3D(Three-Dimension) 움직임 인식을 하고자 한다.

  • PDF

얼굴 특징 변화에 따른 휴먼 감성 인식 (Human Emotion Recognition based on Variance of Facial Features)

  • 이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.79-85
    • /
    • 2017
  • Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.

  • PDF