본 논문에서는 DCT계수의 특성을 이용하여 조명조건이나 얼굴의 크기에 무관하게 얼굴특징영역을 검출하기 위한 새로운 방법을 제안한다. 일반적으로 영상을 DCT변환하면 영상의 에너지가 저주파영역에 집중되는 특성을 가지나 얼굴 특징요소들은 얼굴영상에서 비교적 고주파 성분들을 포함하고 있기 때문에 저주파에 해당되는 DCT계수들의 일부를 제거한 후 역변환을 취하면 얼굴특징영역이 강조된 영상을 얻을 수 있다. 따라서, 본 논문에서는 DCT변환된 영상으로부터 저주파 계수의 일부를 제거하여 얼굴특징요소 후보들을 추출한 후 템플릿을 적용하여 얼굴특징요소 영역을 결정한다. 얼굴특징요소 영역이 결정되면 얼굴특징요소 추출 알고리즘을 적용하여 눈. 코, 입을 구별한다. 제안된 알고리즘을 MIT의CBCL DB와 Yale facedatabase B 에 적용하여 실험하였다. 실험결과 DCT변환된 영상에서 저주파 일부의 계수를 제거한 후 얼굴 특징영역을 검출했을 경우 그렇지 않은 영상보다 영상의 크기와 조명조건의 변화에 무관하게 인식성능이 향상됨을 알 수 있었다.
Objectives : The purpose of this study is to develop an apparatus which can take a facial image by self-operated capturing technique. The user can obtain one's facial image immediately after adjusting facial tilt and focusing distance. The system has been designed for classifying Sasang typology based on facial image. Methods : The system is composed of a Webcam, one-way glass mirror and mini LCD. The Webcam takes a facial image which is displayed on the mini LCD. Then the user can see and adjust to the right position in the real time through the image mirror-reflected from the mini LCD. The optical sensor is used to estimate the proper focusing distance. To verify the performance of the system, 11 characteristic points on the facial image are used and compared with high performance DSLR camera(D700) by applying the coefficient of variance and Bland-Altman Plot. Results : The developed system and D700 show enough agreement with the small coefficient of variance to analyse constitutional types with a facial im mage. However, the result of Bland-Altman plot shows that the width parameters have distortions owing to short focusing distance. Conclusions : The system is expected to be utilized on u-healthcare services for home environment after improving the distortion in the width parameters.
얼굴 영상에서 나이를 인식하는 기술은 여러 응용분야에서 활용되면서 그에 대한 연구가 활발히 진행되고 있다. 다양한 환경에서 촬영된 얼굴 영상은 얼굴의 일부가 가려지는 경우가 많으며 이는 나이 인식 성능에 영향을 미치게 된다. 따라서 본 논문에서는 가림이 있는 얼굴 영상의 나이 인식 성능을 개선하기 위해, Image Extrapolation 기술을 이용하여 가려진 부분을 생성하여 나이를 인식하는 방법을 제안한다. 영상에서의 가림이 나이 인식 성능에 미치는 영향을 확인하기 위해서 마스크 이미지를 적용하여 가림이 있는 얼굴 영상을 생성하였다. 가림에 의해 나이 인식 성능이 저하되는 문제를 해결하기 위해, Image Extrapolation 기술 중 영상의 가장자리를 순회하면서 가려진 부분을 생성하는 SpiralNet 을 사용하여 가려진 부분을 예측하여 생성하고 얼굴 나이 인식에 사용하였다. 실험을 통해 가림이 있는 영상에서 나이 인식 성능이 저하되는 문제가 있고, SpiralNet으로 가림 부분을 생성한 영상으로 나이를 인식하면 나이 인식 성능이 개선되는 것을 확인하였다.
본 논문에서는 흑백 동영상을 사용하여 얼굴 표정 및 제스처를 실시간으로 인식하는 시스템을 개발하였다. 얼굴 인식분야에서는 형판 정합법과 얼굴의 기하학적 고찰에 의한 사전지식을 바탕으로 한 방법을 혼합하여 사용하였다. 혼합 방법에 의해 입력영상에서 얼굴 부위만을 제한하였으며, 이 영역에 옵티컬 플로우를 적용하여 얼굴 표정을 인식하였다. 제스처 인식에서는 엔트로피를 분석하여 복잡한 배경영상으로부터 손 영역을 분리하는 방법을 제안하였으며 , 이 방법을 개선하여 손동작에 대한 제스처를 인식하였다. 실험 결과, 입력 영상의 배경에 크게 영향을 받지 않고서도 동일 영상에서 움직임이 큰 부위를 검출하여 얼굴의 표정 및 손 제스처를 실시간적으로 인식할 수 있었다.
본 논문은 얼굴 영상을 합성할 때 조명 변화에 강인하도록 조명 보정 기법과 푸아송 영상 처리 기법을 결합한 얼굴 합성 방법을 제시한다. 제시된 방법은 얼굴 영상으로부터 자동적으로 피부 영역을 검출하고, 합성할 부위에서 합성 결과에 영향을 주는 세츄레이션된 부분을 보정한 후 최종적으로 대상 얼굴 영상에 합성하게 된다. 개발된 방법은 카메라가 부착된 모바일 기기에서 촬영된 영상 등에서 자주 발생할 수 있는 조명변화를 보완하여 다양한 얼굴합성 응용 분야에 활용될 수 있다.
본 연구는 PCA와 템플릿 정합을 사용한 얼굴 표정 인식 알고리즘을 제안한다. 먼저 얼굴 영상은 Haar-like feature의 특징 마스크를 사용하여 획득한다. 획득한 얼굴 영상은 눈과 눈썹을 포함하고 있는 얼굴 상위 부분과 입과 턱을 포함하고 있는 얼굴 하위 부분으로 분리하여 얼굴 요소 추출에 용이하게 나눈다. 얼굴 요소 추출은 눈 영상과 입 영상을 추출하는 과정으로 먼저 학습영상으로 PCA를 거쳐 생성된 고유얼굴을 구한다. 고유 얼굴에서 고유 입과 고유 눈을 획득하고, 이를 얼굴 분리 영상과 템플릿 매칭시켜 얼굴요소를 추출한다. 얼굴 요소는 눈과 입이 있으며 두 요소의 기하학적 특징으로 표정을 인식한다. 컴퓨터 모의실험 결과에 따르면 제안한 방법이 기존의 방법보다 추출률이 우수하게 나왔으며, 특히 입 요소의 추출률은 99%에 달하였다. 또 이 얼굴 요소 추출 방법을 표정인식에 적용하였을 때 놀람, 화남, 행복의 3가지 표정의 인식률이 80%를 상회하였다.
본 논문에서는 가상대학에서 교수자와 학습자간 상호작용을 위한 지식기반형 문자-얼굴동영상 변환(TTFSI : Text to Facial Sequence Image) 시스템에 관해 연구하였다. TTFSI 시스템의 구현을 위해, 한글의 문법적 특징을 기반으로 가상강의에 사용된 자막정보에 립싱크된 얼굴 동영상 합성하기 위하여 자막정보를 음소코드로 변환하는 방법, 음소코드별 입모양의 변형규칙 작성법, 입모양 변형규칙에 의한 얼굴 동영상 합성법을 제안한다. 제안된 방법에서는 한글의 구조분석을 통해 기본 자모의 발음을 나타내는 10개의 대표 입모양과 조음결합에서 나타나는 78개의 혼합 입모양으로 모든 음절의 입모양을 표현하였다. 특히 PC환경에서의 실시간 영상을 합성하기 위해서 매 프레임마다 입모양을 합성하지 않고, DB에서 88개의 해당 입모양을 불러오는 방법을 사용하였다. 제안된 방법의 유용성을 확인하기 위하여 텍스트 정보에 따른 다양한 얼굴 동영상을 합성하였으며, PC환경에서 구현 가능한 TTFSI 시스템을 구축하였다.
Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.
컴퓨터 분야에서 얼굴근육 이미지합성은 살아있는 것 같은 모델을 실현하기 위한 가장 실재적인 접근방법 중의 하나이며, 얼굴근육 모델은 얼굴조직 성분과 근육으로 구성된다. 이 모델에서 얼굴 조직 성분에 영향을 주는 힘(force)은 각 근육의 수축강도로써 계산되어지고, 각 근육 파라메터의 결합은 명확한 얼굴표현으로 결정한다. 또한 각 근육 파라메터는 실험과 샘플 사진과 근육편집기로 생성한 명확한 이미지를 비유하여 에러처리과정을 통해 결정된다. 이 논문에서 신경회로망을 사용한 2D(Two-Dimension) 지시점의 움직임으로부터 얼굴근육의 자동인식 방법을 제안하고자 하며, 얼굴모델을 기반으로 한 물리학적 제한하에 캡처된 이미지에서 정보 흐름과 2D 포인트로부터 3D(Three-Dimension) 움직임 인식을 하고자 한다.
Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.