• Title/Summary/Keyword: Facial Emotion Expression

Search Result 203, Processing Time 0.031 seconds

Emotion Recognition using Facial Thermal Images

  • Eom, Jin-Sup;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.427-435
    • /
    • 2012
  • The aim of this study is to investigate facial temperature changes induced by facial expression and emotional state in order to recognize a persons emotion using facial thermal images. Background: Facial thermal images have two advantages compared to visual images. Firstly, facial temperature measured by thermal camera does not depend on skin color, darkness, and lighting condition. Secondly, facial thermal images are changed not only by facial expression but also emotional state. To our knowledge, there is no study to concurrently investigate these two sources of facial temperature changes. Method: 231 students participated in the experiment. Four kinds of stimuli inducing anger, fear, boredom, and neutral were presented to participants and the facial temperatures were measured by an infrared camera. Each stimulus consisted of baseline and emotion period. Baseline period lasted during 1min and emotion period 1~3min. In the data analysis, the temperature differences between the baseline and emotion state were analyzed. Eyes, mouth, and glabella were selected for facial expression features, and forehead, nose, cheeks were selected for emotional state features. Results: The temperatures of eyes, mouth, glanella, forehead, and nose area were significantly decreased during the emotional experience and the changes were significantly different by the kind of emotion. The result of linear discriminant analysis for emotion recognition showed that the correct classification percentage in four emotions was 62.7% when using both facial expression features and emotional state features. The accuracy was slightly but significantly decreased at 56.7% when using only facial expression features, and the accuracy was 40.2% when using only emotional state features. Conclusion: Facial expression features are essential in emotion recognition, but emotion state features are also important to classify the emotion. Application: The results of this study can be applied to human-computer interaction system in the work places or the automobiles.

Human Emotion Recognition based on Variance of Facial Features (얼굴 특징 변화에 따른 휴먼 감성 인식)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.79-85
    • /
    • 2017
  • Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.

  • PDF

Dynamic Emotion Classification through Facial Recognition (얼굴 인식을 통한 동적 감정 분류)

  • Han, Wuri;Lee, Yong-Hwan;Park, Jeho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.53-57
    • /
    • 2013
  • Human emotions are expressed in various ways. It can be expressed through language, facial expression and gestures. In particular, the facial expression contains many information about human emotion. These vague human emotion appear not in single emotion, but in combination of various emotion. This paper proposes a emotional expression algorithm using Active Appearance Model(AAM) and Fuzz k- Nearest Neighbor which give facial expression in similar with vague human emotion. Applying Mahalanobis distance on the center class, determine inclusion level between center class and each class. Also following inclusion level, appear intensity of emotion. Our emotion recognition system can recognize a complex emotion using Fuzzy k-NN classifier.

Emotion Recognition based on Tracking Facial Keypoints (얼굴 특징점 추적을 통한 사용자 감성 인식)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.97-101
    • /
    • 2019
  • Understanding and classification of the human's emotion play an important tasks in interacting with human and machine communication systems. This paper proposes a novel emotion recognition method by extracting facial keypoints, which is able to understand and classify the human emotion, using active Appearance Model and the proposed classification model of the facial features. The existing appearance model scheme takes an expression of variations, which is calculated by the proposed classification model according to the change of human facial expression. The proposed method classifies four basic emotions (normal, happy, sad and angry). To evaluate the performance of the proposed method, we assess the ratio of success with common datasets, and we achieve the best 93% accuracy, average 82.2% in facial emotion recognition. The results show that the proposed method effectively performed well over the emotion recognition, compared to the existing schemes.

Emotion Recognition and Expression System of Robot Based on 2D Facial Image (2D 얼굴 영상을 이용한 로봇의 감정인식 및 표현시스템)

  • Lee, Dong-Hoon;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.371-376
    • /
    • 2007
  • This paper presents an emotion recognition and its expression system of an intelligent robot like a home robot or a service robot. Emotion recognition method in the robot is used by a facial image. We use a motion and a position of many facial features. apply a tracking algorithm to recognize a moving user in the mobile robot and eliminate a skin color of a hand and a background without a facial region by using the facial region detecting algorithm in objecting user image. After normalizer operations are the image enlarge or reduction by distance of the detecting facial region and the image revolution transformation by an angel of a face, the mobile robot can object the facial image of a fixing size. And materialize a multi feature selection algorithm to enable robot to recognize an emotion of user. In this paper, used a multi layer perceptron of Artificial Neural Network(ANN) as a pattern recognition art, and a Back Propagation(BP) algorithm as a learning algorithm. Emotion of user that robot recognized is expressed as a graphic LCD. At this time, change two coordinates as the number of times of emotion expressed in ANN, and change a parameter of facial elements(eyes, eyebrows, mouth) as the change of two coordinates. By materializing the system, expressed the complex emotion of human as the avatar of LCD.

Design of the emotion expression in multimodal conversation interaction of companion robot (컴패니언 로봇의 멀티 모달 대화 인터랙션에서의 감정 표현 디자인 연구)

  • Lee, Seul Bi;Yoo, Seung Hun
    • Design Convergence Study
    • /
    • v.16 no.6
    • /
    • pp.137-152
    • /
    • 2017
  • This research aims to develop the companion robot experience design for elderly in korea based on needs-function deploy matrix of robot and emotion expression research of robot in multimodal interaction. First, Elder users' main needs were categorized into 4 groups based on ethnographic research. Second, the functional elements and physical actuators of robot were mapped to user needs in function- needs deploy matrix. The final UX design prototype was implemented with a robot type that has a verbal non-touch multi modal interface with emotional facial expression based on Ekman's Facial Action Coding System (FACS). The proposed robot prototype was validated through a user test session to analyze the influence of the robot interaction on the cognition and emotion of users by Story Recall Test and face emotion analysis software; Emotion API when the robot changes facial expression corresponds to the emotion of the delivered information by the robot and when the robot initiated interaction cycle voluntarily. The group with emotional robot showed a relatively high recall rate in the delayed recall test and In the facial expression analysis, the facial expression and the interaction initiation of the robot affected on emotion and preference of the elderly participants.

얼굴근전도와 얼굴표정으로 인한 감성의 정성적 평가에 대한 연구

  • 황민철;김지은;김철중
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.264-269
    • /
    • 1996
  • Facial expression is innate communication skill of human. Human can recognize theri psychological state by facial parameters which contain surface movement, color, humidity and etc. This study is to quantify or qualify human emotion by measurement of facial electromyography (EMG) and facial movement. The measurement is taken at the facial area of frontalis and zygomaticus The results is indicative to discriminate the positive and negative respond of emotion and to extract the parameter sensitive to positive and negative facial-expression. The facial movement according to EMG shows the possibility of non-invasive technique of human emotion.

  • PDF

Emotion Training: Image Color Transfer with Facial Expression and Emotion Recognition (감정 트레이닝: 얼굴 표정과 감정 인식 분석을 이용한 이미지 색상 변환)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • We propose an emotional training framework that can determine the initial symptom of schizophrenia by using emotional analysis method through facial expression change. We use Emotion API in Microsoft to obtain facial expressions and emotion values at the present time. We analyzed these values and recognized subtle facial expressions that change with time. The emotion states were classified according to the peak analysis-based variance method in order to measure the emotions appearing in facial expressions according to time. The proposed method analyzes the lack of emotional recognition and expressive ability by using characteristics that are different from the emotional state changes classified according to the six basic emotions proposed by Ekman. As a result, the analyzed values are integrated into the image color transfer framework so that users can easily recognize and train their own emotional changes.

Facial Expression Recognition with Fuzzy C-Means Clusstering Algorithm and Neural Network Based on Gabor Wavelets

  • Youngsuk Shin;Chansup Chung;Lee, Yillbyung
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.126-132
    • /
    • 2000
  • This paper presents a facial expression recognition based on Gabor wavelets that uses a fuzzy C-means(FCM) clustering algorithm and neural network. Features of facial expressions are extracted to two steps. In the first step, Gabor wavelet representation can provide edges extraction of major face components using the average value of the image's 2-D Gabor wavelet coefficient histogram. In the next step, we extract sparse features of facial expressions from the extracted edge information using FCM clustering algorithm. The result of facial expression recognition is compared with dimensional values of internal stated derived from semantic ratings of words related to emotion. The dimensional model can recognize not only six facial expressions related to Ekman's basic emotions, but also expressions of various internal states.

  • PDF