This paper presents a novel method to speed up neural network (NN) based face detection systems. NN-based face detection can be viewed as a classification and search problem. The proposed method formulates the search problem as an integer nonlinear optimization problem (INLP) and develops an improved genetic algorithm (IGA) to solve it. Each individual in the IGA represents a subwindow in an input image. The subwindows are evaluated by how well they match a NN-based face filter. A face is indicated when the filter response of the best particle is above a given threshold. Experimental results show that the proposed method leads to a speedup of 83 on $320{\times}240$ images compared to the traditional exhaustive search method.
In the modern 21st century society, the personal image is considered to be very important. As a result, the importance of presenting one's personal image through personal color in fashion and beauty related fields are increasing, and is the most realistic and practical field of color. When the color of the wardrobe and the skin color are in disharmony, that disharmony becomes the source of the lines and wrinkles that appear on one's face, resulting in shades. The boundary that is created when the color of the wardrobe and the skin color are in disharmony, it works negatively on one's image. When color arrangements are close or similar (in harmony) or are in complementary color arrangements or in strong contrasting state (contrasting harmony), it is generally believed to be beautifully harmonious. Personal color assessment is finding colors, through systematic and scientific methods, that improve the personal image by reaching harmony with skin colors that each and every individual are uniquely born with. In this study, one was able to learn the improved visual effects of the face image through creating harmony with the wardrobe and color shade make up and complementary colors that were selected based on personal colors. The base make up, through using the contrasting effects of the complementary colors which represents the supplementing, correcting, and complementing of the face image by contrasting with complementary colors, brings positive changes through correcting the base skin color. It is believed that this study finds its importance in that the improved image that is created by the overall harmony of the wardrobe and body can be used as valuable data in marketing and new product development efforts in the related industries.
본 논문은 얼굴 검출을 이용한 숏의 유형을 판단하는 방법론을 제시한다. 클로즈 업 숏이나 미디엄 숏, 롱 숏과 같은 숏의 유형은 영화의 서사 구조를 파악하는 주요한 단서이다. 클로즈 업을 통해 감독은 등장인물의 감정 상태를 묘사하고 롱 숏을 통해 인물이 처한 상황이나 배경을 묘사하게 된다. 인물의 심리나 감정의 변화, 인물이 처한 상황을 묘사하는 숏의 여러 유형은 인물과 카메라의 거리에 의해 결정된다. 따라서 화면에 등장하는 인물의 얼굴 크기를 알아내어 숏의 유형을 판단할 수 있다. 이를 위해 본 논문에서는 얼굴 검출을 통해 숏의 유형을 감지하는 방법론을 제시하고 시스템으로 구현하여 성능을 평가한다. 평가실험에서 클로즈 업 숏과 미디엄 숏의 감지 성능은 95%와 90%로 비교적 높게 나타났지만 얼굴의 윤곽이 불분명한 롱 숏의 경우 53.3%로 측정되었다.
본 논문에서는 대표적인 특징점 추출 알고리즘인 SURF (Speeded Up Robust Features)를 이용한 얼굴 인식 방법을 소개한 다. 일반적으로, SURF를 이용한 물체 인식은 특징점 추출 및 정합만을 수행하지만, 본 논문에서 제안하는 SURF를 이용한 얼굴 인식 방법은 특징점 추출 및 정합뿐만 아니라 얼굴 영상 회전 및 특징점 검증을 추가로 수행한다. 얼굴 영상 회전은 특징점의 수를 증가시키기 위해 수행되며, 특징점 검증은 정확하게 정합된 특징점들을 찾기 위해 수행된다. 비록 본 논문에서 제안한 SURF를 이용한 얼굴 인식 방법은 PCA를 이용한 방법보다 연산 시간이 더 요구되었지만, 인식률은 보다 더 높았다. 이러한 실험 결과를 통해, 특징점 추출 알고리즘도 얼굴 인식에 적용할 수 있음을 확인할 수 있었다.
Kim, Soo-Hyun;Lim, Sung-Hyun;Cha, Hyung-Tai;Hahn, Hern-Soo
한국지능시스템학회논문지
/
제13권4호
/
pp.461-468
/
2003
In a sequence of images obtained by surveillance cameras, facial regions appear very small and their colors change abruptly by lighting condition. This paper proposes a new face detection scheme, robust on complex background, small size, and lighting conditions. The proposed method is consisted of three processes. In the first step, the candidates for the face regions are selected using face color distribution and motion information. In the second stage, the non-face regions are removed using face color ratio, boundary ratio, and average of column-wise intensity variation in the candidates. The face regions containing eyes and mouth are segmented and classified, and then they are scored using their topological relations in the last step. To speed up and improve a performance the above process, a block based image segmentation technique is used. The experiments have shown that the proposed algorithm detects faced regions with more than 91% of accuracy and less than 4.3% of false alarm rate.
In this paper, we propose a new algorithm to detect human faces for controling a camera used in video conference. We model the distribution of skin color and set up the standard skin color in YIQ color space. An input video frame image is segmented into skin and non-skin segments by comparing the standard skin color and each pixels in the input video frame. Then, shape filler is applied to select face segments from skin segments. Our algorithm detects human faces in real time to control a camera to capture a human face with a proper size and position.
The chassis of T.V, cassette, radio and telephone are made up thin-iron plates that makes a lot of female screws to assemble various parts. Then makes hole in the iron plate and forming female screws of burring face after the burring. Female screws forming in thin-iron plate is very difficult working then rolled forming process use of plastic deformation instead of cut forming. In this study goals are solve the trouble problem of industrial field and develop new model tap for prevent chips.
영화 속 얼굴 이미지에 대한 논의가 시작된 것은 영화가 하나의 예술임을 인정받기 시작한 무성 영화 시기부터 인데, 이 시기는 클로즈 업을 인식하는 두 관점에 따라 얼굴 이미지는 다른 의미와 기능을 갖게 된다. 첫째는 클로즈 업을 영화의 새로운 미학적 가능성을 지닌 독립체로 보는 관점인데, 이 경우 클로즈 업은 얼굴을 재현하는 독자적 수단으로 이해되어, 얼굴 이미지와 클로즈 업 모두에게 특권적 지위가 부여된다. 둘째, 클로즈 업 또한 서사를 완성하는 구성체 중 하나로 보는 관점인데, 이 경우 대상의 지표 성을 부곽 시키는 클로즈 업의 특성이 이해되지 못하기 때문에, 얼굴 이미지 또한 서사의 완결성을 와해시키지 않는 선에서, 다른 쇼트와 변별점이 없는 하나의 쇼트로 이해된다. 이 시기의 논의는 영화의 미장센을 구성하는 다양한 요소와의 관계를 통해 다양한 기능과 의미를 갖게 될 얼굴 이미지의 미학적 가능성에 대한 논의가 클로즈 업의 자장 안에서만 이루어진다는 한계가 있지만. 그럼에도 불구하고 영화 속 얼굴 이미지에 대한 미학적 탐구의 가능성을 발견 했다는 점과, 이 시기의 비평적 담론이 현재까지도 유효하다는 점에서 큰 의의가 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권11호
/
pp.2720-2736
/
2013
Multi-view face detection has become an active area for research in the last few years. In this paper, a novel multi-view human face detection algorithm based on improved real Adaboost is presented. Real Adaboost algorithm is improved by weighted combination of weak classifiers and the approximately best combination coefficients are obtained. After that, we proved that the function of sample weight adjusting method and weak classifier training method is to guarantee the independence of weak classifiers. A coarse-to-fine hierarchical face detector combining the high efficiency of Haar feature with pose estimation phase based on our real Adaboost algorithm is proposed. This algorithm reduces training time cost greatly compared with classical real Adaboost algorithm. In addition, it speeds up strong classifier converging and reduces the number of weak classifiers. For frontal face detection, the experiments on MIT+CMU frontal face test set result a 96.4% correct rate with 528 false alarms; for multi-view face in real time test set result a 94.7 % correct rate. The experimental results verified the effectiveness of the proposed approach.
In this paper, 3D face recognition model is designed by using Polynomial based RBFNN(Radial Basis Function Neural Network) and PNN(Polynomial Neural Network). Also recognition rate is performed by this model. In existing 2D face recognition model, the degradation of recognition rate may occur in external environments such as face features using a brightness of the video. So 3D face recognition is performed by using 3D scanner for improving disadvantage of 2D face recognition. In the preprocessing part, obtained 3D face images for the variation of each pose are changed as front image by using pose compensation. The depth data of face image shape is extracted by using Multiple point signature. And whole area of face depth information is obtained by using the tip of a nose as a reference point. Parameter optimization is carried out with the aid of both ABC(Artificial Bee Colony) and PSO(Particle Swarm Optimization) for effective training and recognition. Experimental data for face recognition is built up by the face images of students and researchers in IC&CI Lab of Suwon University. By using the images of 3D face extracted in IC&CI Lab. the performance of 3D face recognition is evaluated and compared according to two types of models as well as point signature method based on two kinds of depth data information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.