• Title/Summary/Keyword: Face-to-face Method

Search Result 3,236, Processing Time 0.028 seconds

A study on average changes in college students' credits earned and grade point average according to face-to-face and non-face-to-face classes in the COVID-19 situation

  • Jeong-Man, Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.167-175
    • /
    • 2023
  • In the context of COVID-19, this study was conducted to study how college students' earned grades and average grade point averages changed according to face-to-face and non-face-to-face classes. For this study, grade data was extracted using an access database. For the study, 152 students during the 3rd semester were compared and analyzed the grade point average, average grade point average, midterm exam, final exam, assignment score, and attendance score of students who participated in non-face-to-face and face-to-face classes. As an analysis method, independent sample t-test statistical processing was performed. It was concluded that the face-to-face class students had better grades and average GPA. As a result, the face-to-face class students showed 4.39 points higher than the non-face-to-face class students, and the average grade value was 0.6642 points higher. As a result of the comparative analysis, it was statistically significant, and the face-to-face class averaged 21.22 and the non-face-to-face class had 16.83 points. In conclusion, it was confirmed that face-to-face students' grades were generally higher than those of non-face-to-face students, and that face-to-face students showed higher participation in class.

An Improved Genetic Algorithm for Fast Face Detection Using Neural Network as Classifier

  • Sugisaka, Masanori;Fan, Xinjian
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1034-1038
    • /
    • 2005
  • This paper presents a novel method to speed up neural network (NN) based face detection systems. NN-based face detection can be viewed as a classification and search problem. The proposed method formulates the search problem as an integer nonlinear optimization problem (INLP) and develops an improved genetic algorithm (IGA) to solve it. Each individual in the IGA represents a subwindow in an input image. The subwindows are evaluated by how well they match a NN-based face filter. A face is indicated when the filter response of the best particle is above a given threshold. Experimental results show that the proposed method leads to a speedup of 83 on $320{\times}240$ images compared to the traditional exhaustive search method.

  • PDF

A study of hybrid neural network to improve performance of face recognition (얼굴 인식의 성능 향상을 위한 혼합형 신경회로망 연구)

  • Chung, Sung-Boo;Kim, Joo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2622-2627
    • /
    • 2010
  • The accuracy of face recognition used unmanned security system is very important and necessary. However, face recognition is a lot of restriction due to the change of distortion of face image, illumination, face size, face expression, round image. We propose a hybrid neural network for improve the performance of the face recognition. The proposed method is consisted of SOM and LVQ. In order to verify usefulness of the proposed method, we make a comparison between eigenface method, hidden Markov model method, multi-layer neural network.

Performance Analysis of Face Recognition by Face Image resolutions using CNN without Backpropergation and LDA (역전파가 제거된 CNN과 LDA를 이용한 얼굴 영상 해상도별 얼굴 인식률 분석)

  • Moon, Hae-Min;Park, Jin-Won;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • To satisfy the needs of high-level intelligent surveillance system, it shall be able to extract objects and classify to identify precise information on the object. The representative method to identify one's identity is face recognition that is caused a change in the recognition rate according to environmental factors such as illumination, background and angle of camera. In this paper, we analyze the robust face recognition of face image by changing the distance through a variety of experiments. The experiment was conducted by real face images of 1m to 5m. The method of face recognition based on Linear Discriminant Analysis show the best performance in average 75.4% when a large number of face images per one person is used for training. However, face recognition based on Convolution Neural Network show the best performance in average 69.8% when the number of face images per one person is less than five. In addition, rate of low resolution face recognition decrease rapidly when the size of the face image is smaller than $15{\times}15$.

Real-Time Face Detection, Tracking and Tilted Face Image Correction System Using Multi-Color Model and Face Feature (복합 칼라모델과 얼굴 특징자를 이용한 실시간 얼굴 검출 추적과 기울어진 얼굴보정 시스템)

  • Lee Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.4
    • /
    • pp.470-481
    • /
    • 2006
  • In this paper, we propose a real-time face detection, tracking and tilted face image correction system using multi-color model and face feature information. In the proposed system, we detect face candidate using YCbCr and YIQ color model. And also, we detect face using vertical and horizontal projection method and track people's face using Hausdorff matching method. And also, we correct tilted face with the correction of tilted eye features. The experiments have been performed for 110 test images and shows good performance. Experimental results show that the proposed algorithm robust to detection and tracking of face at real-time with the change of exterior condition and recognition of tilted face. Accordingly face detection and tilted face correction rate displayed 92.27% and 92.70% respectively and proposed algorithm shows 90.0% successive recognition rate.

  • PDF

Three-dimensional Face Recognition based on Feature Points Compression and Expansion

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Park, Sang-min;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk;Son, Byounghee
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.91-98
    • /
    • 2019
  • Many researchers have attempted to recognize three-dimensional faces using feature points extracted from two-dimensional facial photographs. However, due to the limit of flat photographs, it is very difficult to recognize faces rotated more than 15 degrees from original feature points extracted from the photographs. As such, it is difficult to create an algorithm to recognize faces in multiple angles. In this paper, it is proposed a new algorithm to recognize three-dimensional face recognition based on feature points extracted from a flat photograph. This method divides into six feature point vector zones on the face. Then, the vector value is compressed and expanded according to the rotation angle of the face to recognize the feature points of the face in a three-dimensional form. For this purpose, the average of the compressibility and the expansion rate of the face data of 100 persons by angle and face zone were obtained, and the face angle was estimated by calculating the distance between the middle of the forehead and the tail of the eye. As a result, very improved recognition performance was obtained at 30 degrees of rotated face angle.

Detection of Complaints of Non-Face-to-Face Work before and during COVID-19 by Using Topic Modeling and Sentiment Analysis (동적 토픽 모델링과 감성 분석을 이용한 COVID-19 구간별 비대면 근무 부정요인 검출에 관한 연구)

  • Lee, Sun Min;Chun, Se Jin;Park, Sang Un;Lee, Tae Wook;Kim, Woo Ju
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.277-301
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the sentiment responses of the general public to non-face-to-face work using text mining methodology. As the number of non-face-to-face complaints is increasing over time, it is difficult to review and analyze in traditional methods such as surveys, and there is a limit to reflect real-time issues. Approach This study has proposed a method of the research model, first by collecting and cleansing the data related to non-face-to-face work among tweets posted on Twitter. Second, topics and keywords are extracted from tweets using LDA(Latent Dirichlet Allocation), a topic modeling technique, and changes for each section are analyzed through DTM(Dynamic Topic Modeling). Third, the complaints of non-face-to-face work are analyzed through the classification of positive and negative polarity in the COVID-19 section. Findings As a result of analyzing 1.54 million tweets related to non-face-to-face work, the number of IDs using non-face-to-face work-related words increased 7.2 times and the number of tweets increased 4.8 times after COVID-19. The top frequently used words related to non-face-to-face work appeared in the order of remote jobs, cybersecurity, technical jobs, productivity, and software. The words that have increased after the COVID-19 were concerned about lockdown and dismissal, and business transformation and also mentioned as to secure business continuity and virtual workplace. New Normal was newly mentioned as a new standard. Negative opinions found to be increased in the early stages of COVID-19 from 34% to 43%, and then stabilized again to 36% through non-face-to-face work sentiment analysis. The complaints were, policies such as strengthening cybersecurity, activating communication to improve work productivity, and diversifying work spaces.

Automatic Face Identification System Using Adaptive Face Region Detection and Facial Feature Vector Classification

  • Kim, Jung-Hoon;Do, Kyeong-Hoon;Lee, Eung-Joo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1252-1255
    • /
    • 2002
  • In this paper, face recognition algorithm, by using skin color information of HSI color coordinate collected from face images, elliptical mask, fratures of face including eyes, nose and mouth, and geometrical feature vectors of face and facial angles, is proposed. The proposed algorithm improved face region extraction efficacy by using HSI information relatively similar to human's visual system along with color tone information about skin colors of face, elliptical mask and intensity information. Moreover, it improved face recognition efficacy with using feature information of eyes, nose and mouth, and Θ1(ACRED), Θ2(AMRED) and Θ 3(ANRED), which are geometrical face angles of face. In the proposed algorithm, it enables exact face reading by using color tone information, elliptical mask, brightness information and structural characteristic angle together, not like using only brightness information in existing algorithm. Moreover, it uses structural related value of characteristics and certain vectors together for the recognition method.

  • PDF

A Study on the Perception and Application of Distance Learning Method to Cooking Practice Subject - College Students with Cuisine-Related Majors in Seoul and Gyeonggi Areas - (조리실기과목에 대한 원격교육방법 활용현황과 인식 조사 - 서울.경기지역 외식조리관련전공 2년제 대학생을 대상으로 -)

  • Kang, Jae-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.6
    • /
    • pp.661-670
    • /
    • 2010
  • Although many studies have suggested that introducing the distance learning method, including Web-based learning, to a practice class is effective, studies applying the distance learning method to subjects who are practicing cooking are rare. The purpose of this study was to determine the perception of the distance learning method, the degree of computer use, and the use of distance learning by college students with cuisine-related majors to practice cooking. The results showed that most students used the distance learning method, and that the method was positively perceived, as it was a great aid in learning. Most of the cooking information was obtained through the internet, and the most effective learning media for practicing cooking was "e-learning" using a computer. The most effective learning method for those who were practicing cooking was a "face-to-face learning method", because face-to-face type of teaching and learning was most universally recognized. Most of the students surveyed responded that using the distance learning method was a positive experience, indicating that cyber lectures could be applied at more universities for subjects practicing cooking.

A Study on the Construction of Non-face-to-face Lecture of KAOMPT: Delphi Survey Research to Post COVID-19 Untact Era (대한정형도수물리치료학회 비대면 강의 체계 구축 연구: 포스트 코로나19 대비 델파이 기법 분석 적용 사례)

  • Kim, Jin-young;Shin, Young-il;Yang, Sung-hwa
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Background: The purpose of this study is to identify the elements for the construction of the Korean academy of orthopedic manipulative physical therapy's (KAOMPT's) non-face-to-face lecture system using the Delphi method. Methods: The Delphi method was applied to 50 expert panel members of the Central Committee and the Provincial Branch of the KAOMPT. The Delphi survey was conducted in two rounds, and the first Delphi survey collected opinions on 40 questions on 12 topics. The second Delphi survey was collected into 25 questions on 4 topics. As a result of the survey, the content validity ratio (CVR), consensus and convergence were measured. Referring to the number of expert panels and previous studies were determine a CVR of at least 2.29, a consensus of at least .75 and a convergence of 0 to .5. Result: In the first Delphi result, out of the total 40 items, 20 items with high content validity ratio were found, and 10 items found double agreement. In the second Delphi result, 13 out of the total 25 items had a content validity ratio higher than 2.29, and 5 items found a double agreement. Conclusion: This study derived items on the role of central and municipal councils, lecture support and lecture room construction, non-face regular course and special lecture operation and personnel for the establishment of non-face-to-face lecture system. Based on this content, it is expected that it will help establish a non-face-to-face lecture system in 2021 through a pilot non-face-to-face lecture that will be implemented in the future.