• Title/Summary/Keyword: Face recognition system

Search Result 620, Processing Time 0.024 seconds

A Secure Face Cryptogr aphy for Identity Document Based on Distance Measures

  • Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.10
    • /
    • pp.1156-1162
    • /
    • 2013
  • Face verification has been widely studied during the past two decades. One of the challenges is the rising concern about the security and privacy of the template database. In this paper, we propose a secure face verification system which generates a unique secure cryptographic key from a face template. The face images are processed to produce face templates or codes to be utilized for the encryption and decryption tasks. The result identity data is encrypted using Advanced Encryption Standard (AES). Distance metric naming hamming distance and Euclidean distance are used for template matching identification process, where template matching is a process used in pattern recognition. The proposed system is tested on the ORL, YALEs, and PKNU face databases, which contain 360, 135, and 54 training images respectively. We employ Principle Component Analysis (PCA) to determine the most discriminating features among face images. The experimental results showed that the proposed distance measure was one the promising best measures with respect to different characteristics of the biometric systems. Using the proposed method we needed to extract fewer images in order to achieve 100% cumulative recognition than using any other tested distance measure.

Development of Face Recognition System based on Real-time Mini Drone Camera Images (실시간 미니드론 카메라 영상을 기반으로 한 얼굴 인식 시스템 개발)

  • Kim, Sung-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.17-23
    • /
    • 2019
  • In this paper, I propose a system development methodology that accepts images taken by camera attached to drone in real time while controlling mini drone and recognize and confirm the face of certain person. For the development of this system, OpenCV, Python related libraries and the drone SDK are used. To increase face recognition ratio of certain person from real-time drone images, it uses Deep Learning-based facial recognition algorithm and uses the principle of Triples in particular. To check the performance of the system, the results of 30 experiments for face recognition based on the author's face showed a recognition rate of about 95% or higher. It is believed that research results of this paper can be used to quickly find specific person through drone at tourist sites and festival venues.

Human Face Recognition System Based on Skin Color Informations and Geometrical Feature Analysis of Face (피부색 정보와 얼굴의 구조적 특징 분석을 통한 얼굴 영상 인식 시스템)

  • Lee Eung- Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.42-48
    • /
    • 2000
  • In this paper, we propose the face image recognition algorithm using skin color information, face region features such as eye, nose, and mouse, etc., and geometrical features of chin line. In the proposed algorithm, we used the intensity as well as skin color information in the HSI color coordinate which is similar to human eye system. The experimental results of proposed method shows improved extraction quality of face and provides adaptive extraction methods for the races. And also, we used chin line information as well as geometrical features of face such as eye, nose, mouse information for the improvement of face recognition quality, Experimental results shows the more improved recognition as well as extraction quality than conventional methods.

  • PDF

A Study on Improvement of Face Recognition Rate with Transformation of Various Facial Poses and Expressions (얼굴의 다양한 포즈 및 표정의 변환에 따른 얼굴 인식률 향상에 관한 연구)

  • Choi Jae-Young;Whangbo Taeg-Keun;Kim Nak-Bin
    • Journal of Internet Computing and Services
    • /
    • v.5 no.6
    • /
    • pp.79-91
    • /
    • 2004
  • Various facial pose detection and recognition has been a difficult problem. The problem is due to the fact that the distribution of various poses in a feature space is mere dispersed and more complicated than that of frontal faces, This thesis proposes a robust pose-expression-invariant face recognition method in order to overcome insufficiency of the existing face recognition system. First, we apply the TSL color model for detecting facial region and estimate the direction of face using facial features. The estimated pose vector is decomposed into X-V-Z axes, Second, the input face is mapped by deformable template using this vectors and 3D CANDIDE face model. Final. the mapped face is transformed to frontal face which appropriates for face recognition by the estimated pose vector. Through the experiments, we come to validate the application of face detection model and the method for estimating facial poses, Moreover, the tests show that recognition rate is greatly boosted through the normalization of the poses and expressions.

  • PDF

Design of Three-dimensional Face Recognition System Using Optimized PRBFNNs and PCA : Comparative Analysis of Evolutionary Algorithms (최적화된 PRBFNNs 패턴분류기와 PCA알고리즘을 이용한 3차원 얼굴인식 알고리즘 설계 : 진화 알고리즘의 비교 해석)

  • Oh, Sung-Kwun;Oh, Seung-Hun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.539-544
    • /
    • 2013
  • In this paper, we was designed three-dimensional face recognition algorithm using polynomial based RBFNNs and proposed method to calculate the recognition performance. In case of two-dimensional face recognition, the recognition performance is reduced by the external environment like facial pose and lighting. In order to compensate for these shortcomings, we perform face recognition by obtaining three-dimensional images. obtain face image using three-dimension scanner before the face recognition and obtain the front facial form using pose-compensation. And the depth value of the face is extracting using Point Signature method. The extracted data as high-dimensional data may cause problems in accompany the training and recognition. so use dimension reduction data using PCA algorithm. accompany parameter optimization using optimization algorithm for effective training. Each recognition performance confirm using PSO, DE, GA algorithm.

Multimodal biometrics system using PDA under ubiquitous environments (유비쿼터스 환경에서 PDA를 이용한 다중생체인식 시스템 구현)

  • Kwon Man-Jun;Yang Dong-Hwa;Kim Yong-Sam;Lee Dae-Jong;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.430-435
    • /
    • 2006
  • In this paper, we propose a method based on multimodal biometrics system using the face and signature under ubiquitous computing environments. First, the face and signature images are obtained by PDA and then these images with user ID and name are transmitted via WLAN(Wireless LAN) to the server and finally the PDA receives verification result from the server. The multimodal biometrics recognition system consists of two parts. In client part located in PDA, user interface program executes the user registration and verification process. The server consisting of the PCA and LDA algorithm shows excellent face recognition performance and the signature recognition method based on the Kernel PCA and LDA algorithm for signature image projected to vertical and horizontal axes by grid partition method. The proposed algorithm is evaluated with several face and signature images and shows better recognition and verification results than previous unimodal biometrics recognition techniques.

A study of hybrid neural network to improve performance of face recognition (얼굴 인식의 성능 향상을 위한 혼합형 신경회로망 연구)

  • Chung, Sung-Boo;Kim, Joo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2622-2627
    • /
    • 2010
  • The accuracy of face recognition used unmanned security system is very important and necessary. However, face recognition is a lot of restriction due to the change of distortion of face image, illumination, face size, face expression, round image. We propose a hybrid neural network for improve the performance of the face recognition. The proposed method is consisted of SOM and LVQ. In order to verify usefulness of the proposed method, we make a comparison between eigenface method, hidden Markov model method, multi-layer neural network.

Development of a Recognition System of Smile Facial Expression for Smile Treatment Training (웃음 치료 훈련을 위한 웃음 표정 인식 시스템 개발)

  • Li, Yu-Jie;Kang, Sun-Kyung;Kim, Young-Un;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.47-55
    • /
    • 2010
  • In this paper, we proposed a recognition system of smile facial expression for smile treatment training. The proposed system detects face candidate regions by using Haar-like features from camera images. After that, it verifies if the detected face candidate region is a face or non-face by using SVM(Support Vector Machine) classification. For the detected face image, it applies illumination normalization based on histogram matching in order to minimize the effect of illumination change. In the facial expression recognition step, it computes facial feature vector by using PCA(Principal Component Analysis) and recognizes smile expression by using a multilayer perceptron artificial network. The proposed system let the user train smile expression by recognizing the user's smile expression in real-time and displaying the amount of smile expression. Experimental result show that the proposed system improve the correct recognition rate by using face region verification based on SVM and using illumination normalization based on histogram matching.

Recording Support System for Off-Line Conference using Face and Speaker Recognition (얼굴 인식 및 화자 정보를 이용한 오프라인 회의 기록 지원 시스템)

  • Son, Yun-Sik;Jung, Jin-Woo;Park, Han-Mu;Kye, Seung-Chul;Yoon, Jong-Hyuk;Jung, Nak-Chun;Oh, Se-Man
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.66-71
    • /
    • 2008
  • Recent multimedia technology has supported various application services based on the development of effective movie compression and network techniques. On-line video conference system is a typical example that use theses two technologies effectively. On-line video conference system can be characterized into an effective conferencing method for long-distanced on-line conference members. But, unfortunately, off-line conference with face-to-face meeting is more frequent than on-line conference and their support systems have not been sufficiently considered. In this paper, we propose a recording support system for off-Line conference using face and speaker recognition. This system finds the speaker in the conference by using three microphones and three webcam cameras. And analysis is done with face region information that gathered by currently active webcam camera, and recognizes the identity of face. Finally, the system tracks speaker and records conference with extract speaker information.

Face Recognition Applying a Preprocessing Technique to Minimize the Influence of Illumination (조명의 영향을 최소화하기 위한 전처리 기법이 적용된 얼굴 인식)

  • Park, Hyeon-Nam;Jo, Hyeong-Je
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.1000-1012
    • /
    • 2000
  • There are many factors for face recognition. Two of those are orientation and brightness of illumination. In early studies of face recognition, with fixing these factors to good conditions th goal of research was focused on improving recognition rate itself. But they are very important factors to be solved for implementing face recognition system. In this paper, two methods wer proposed to minimize the influence of illumination. One is the local difference filter to reduce the influence fo variation of illumination. The other is weight function considering the horizontal difference of intensity. Applying tow proposed methods, the resultant recognition rate revealed 86.5% for 275 test images.

  • PDF