• Title/Summary/Keyword: Face Tracker

Search Result 25, Processing Time 0.03 seconds

Robust Head Tracking using a Hybrid of Omega Shape Tracker and Face Detector for Robot Photographer (로봇 사진사를 위한 오메가 형상 추적기와 얼굴 검출기 융합을 이용한 강인한 머리 추적)

  • Kim, Ji-Sung;Joung, Ji-Hoon;Ho, An-Kwang;Ryu, Yeon-Geol;Lee, Won-Hyung;Jin, Chung-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.152-159
    • /
    • 2010
  • Finding a head of a person in a scene is very important for taking a well composed picture by a robot photographer because it depends on the position of the head. So in this paper, we propose a robust head tracking algorithm using a hybrid of an omega shape tracker and local binary pattern (LBP) AdaBoost face detector for the robot photographer to take a fine picture automatically. Face detection algorithms have good performance in terms of finding frontal faces, but it is not the same for rotated faces. In addition, when the face is occluded by a hat or hands, it has a hard time finding the face. In order to solve this problem, the omega shape tracker based on active shape model (ASM) is presented. The omega shape tracker is robust to occlusion and illuminationchange. However, whenthe environment is dynamic,such as when people move fast and when there is a complex background, its performance is unsatisfactory. Therefore, a method combining the face detection algorithm and the omega shape tracker by probabilistic method using histograms of oriented gradient (HOG) descriptor is proposed in this paper, in order to robustly find human head. A robot photographer was also implemented to abide by the 'rule of thirds' and to take photos when people smile.

Face detection using haar-like feature and Tracking with Lucas-Kanade feature tracker (Haar-like feature를 이용한 얼굴 검출과 추적을 위한 Lucas-Kanade특징 추적)

  • Kim, Ki-Sang;Kim, Se-Hoon;Park, Gene-Yong;Choi, Hyung-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.835-838
    • /
    • 2008
  • In this paper, we present automatic face detection and tracking which is robustness in rotation and translation. Detecting a face image, we used Haar-like feature, which is fast detect facial image. Also tracking, we applied Lucas-Kanade feature tracker and KLT algorithm, which has robustness for rotated facial image. In experiment result, we confirmed that face detection and tracking which is robustness in rotation and translation.

  • PDF

Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function (평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적)

  • Kim, Ki-Sang;Kim, Gye-Young;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, we proposed automatic face detection and tracking which is robustness in rotation. To detect a face image in complicated background and various illuminating conditions, we used face skin color detection. we used Harris corner detector for extract facial feature points. After that, we need to track these feature points. In traditional method, Lucas-Kanade feature tracker doesn't delete useless feature points by occlusion in current scene (face rotation or out of camera). So we proposed the estimation function, which delete useless feature points. The method of delete useless feature points is estimation value at each pyramidal level. When the face was occlusion, we deleted these feature points. This can be robustness to face rotation and out of camera. In experimental results, we assess that using estimation function is better than traditional feature tracker.

Adaptive MCMC-Based Particle Filter for Real-Time Multi-Face Tracking on Mobile Platforms

  • Na, In Seop;Le, Ha;Kim, Soo Hyung
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.17-25
    • /
    • 2014
  • In this paper, we describe an adaptive Markov chain Monte Carlo-based particle filter that effectively addresses real-time multi-face tracking on mobile platforms. Because traditional approaches based on a particle filter require an enormous number of particles, the processing time is high. This is a serious issue, especially on low performance devices such as mobile phones. To resolve this problem, we developed a tracker that includes a more sophisticated likelihood model to reduce the number of particles and maintain the identity of the tracked faces. In our proposed tracker, the number of particles is adjusted during the sampling process using an adaptive sampling scheme. The adaptive sampling scheme is designed based on the average acceptance ratio of sampled particles of each face. Moreover, a likelihood model based on color information is combined with corner features to improve the accuracy of the sample measurement. The proposed tracker applied on various videos confirmed a significant decrease in processing time compared to traditional approaches.

Detection of Faces Located at a Long Range with Low-resolution Input Images for Mobile Robots (모바일 로봇을 위한 저해상도 영상에서의 원거리 얼굴 검출)

  • Kim, Do-Hyung;Yun, Woo-Han;Cho, Young-Jo;Lee, Jae-Jeon
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.257-264
    • /
    • 2009
  • This paper proposes a novel face detection method that finds tiny faces located at a long range even with low-resolution input images captured by a mobile robot. The proposed approach can locate extremely small-sized face regions of $12{\times}12$ pixels. We solve a tiny face detection problem by organizing a system that consists of multiple detectors including a mean-shift color tracker, short- and long-rage face detectors, and an omega shape detector. The proposed method adopts the long-range face detector that is well trained enough to detect tiny faces at a long range, and limiting its operation to only within a search region that is automatically determined by the mean-shift color tracker and the omega shape detector. By focusing on limiting the face search region as much as possible, the proposed method can accurately detect tiny faces at a long distance even with a low-resolution image, and decrease false positives sharply. According to the experimental results on realistic databases, the performance of the proposed approach is at a sufficiently practical level for various robot applications such as face recognition of non-cooperative users, human-following, and gesture recognition for long-range interaction.

  • PDF

Development of Face Tracking System Using Skin Color and Facial Shape (얼굴의 색상과 모양정보를 이용한 조명 변화에 강인한 얼굴 추적 시스템 구현)

  • Lee, Hyung-Soo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.711-718
    • /
    • 2003
  • In this paper, we propose a robust face tracking algorithm. It is based on Condensation algorithm [7] and uses skin color and facial shape as the observation measure. It is hard to integrate color weight and shape weight. So we propose the method that has two separate trackers which uses skin color and facial shape as the observation measure respectively. One tracker tracks skin colored region and the other tracks facial shape. We used importance sampling technique to limit sampling region of two trackers. For skin-colored region tracker, we propose an adaptive color model to avoid the effect of illumination change. The proposed face tracker performs robustly in clutter background and in the illumination changes.

Development of Tracking Equipment for Real­Time Multiple Face Detection (실시간 복합 얼굴 검출을 위한 추적 장치 개발)

  • 나상동;송선희;나하선;김천석;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1823-1830
    • /
    • 2003
  • This paper presents a multiple face detector based on a robust pupil detection technique. The pupil detector uses active illumination that exploits the retro­reflectivity property of eyes to facilitate detection. The detection range of this method is appropriate for interactive desktop and kiosk applications. Once the location of the pupil candidates are computed, the candidates are filtered and grouped into pairs that correspond to faces using heuristic rules. To demonstrate the robustness of the face detection technique, a dual mode face tracker was developed, which is initialized with the most salient detected face. Recursive estimators are used to guarantee the stability of the process and combine the measurements from the multi­face detector and a feature correlation tracker. The estimated position of the face is used to control a pan­tilt servo mechanism in real­time, that moves the camera to keep the tracked face always centered in the image.

Real-Time Multiple Face Detection Using Active illumination (능동적 조명을 이용한 실시간 복합 얼굴 검출)

  • 한준희;심재창;설증보;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.155-160
    • /
    • 2003
  • This paper presents a multiple face detector based on a robust pupil detection technique. The pupil detector uses active illumination that exploits the retro-reflectivity property of eyes to facilitate detection. The detection range of this method is appropriate for interactive desktop and kiosk applications. Once the location of the pupil candidates are computed, the candidates are filtered and grouped into pairs that correspond to faces using heuristic rules. To demonstrate the robustness of the face detection technique, a dual mode face tracker was developed, which is initialized with the most salient detected face. Recursive estimators are used to guarantee the stability of the process and combine the measurements from the multi-face detector and a feature correlation tracker. The estimated position of the face is used to control a pan-tilt servo mechanism in real-time, that moves the camera to keep the tracked face always centered in the image.

  • PDF

Face Tracking and Recognition in Video with PCA-based Pose-Classification and (2D)2PCA recognition algorithm (비디오속의 얼굴추적 및 PCA기반 얼굴포즈분류와 (2D)2PCA를 이용한 얼굴인식)

  • Kim, Jin-Yul;Kim, Yong-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.423-430
    • /
    • 2013
  • In typical face recognition systems, the frontal view of face is preferred to reduce the complexity of the recognition. Thus individuals may be required to stare into the camera, or the camera should be located so that the frontal images are acquired easily. However these constraints severely restrict the adoption of face recognition to wide applications. To alleviate this problem, in this paper, we address the problem of tracking and recognizing faces in video captured with no environmental control. The face tracker extracts a sequence of the angle/size normalized face images using IVT (Incremental Visual Tracking) algorithm that is known to be robust to changes in appearance. Since no constraints have been imposed between the face direction and the video camera, there will be various poses in face images. Thus the pose is identified using a PCA (Principal Component Analysis)-based pose classifier, and only the pose-matched face images are used to identify person against the pre-built face DB with 5-poses. For face recognition, PCA, (2D)PCA, and $(2D)^2PCA$ algorithms have been tested to compute the recognition rate and the execution time.