• Title/Summary/Keyword: Face Shape

Search Result 693, Processing Time 0.022 seconds

Mass Reduction of Transmission Gears for Commercial Vehicles (상용차용 변속기 기어의 경량화)

  • Shin, Yoo-In;Shin, Sung-Hwan;Oh, Tae-Il;Suh, Jeong-Se;Song, Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.319-323
    • /
    • 2012
  • Transmission is one of the important pars to transmit power from engine to wheels. Mass reduction gears can make the engine power requirement reduce, and can make dynamic performance and fuel efficiency of vehicle improve. Transmission gears are modified for mass reduction without changing their tooth shapes, face widths, and modules by using shape optimization and re-check process. Also structural stability is verified by FEA.

The Prediction of Chip Flow Angle on Chip Breaker Shape Parameters (칩브레이커 형상변수에 의한 칩유동각 예측)

  • 박승근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.381-386
    • /
    • 1999
  • In machining with cutting tool inserts having complex chip groove shape, the flow, curl and breaking patterns of the chip are different than in flat-face type inserts. In the present work, an effort is made to understand the three basic phenomena occurring in a chip since its formation in machining with groove type and pattern type inserts. These are the initial chip flow, the subsequent development of up and side curl and the final chip breaking due to the development of torsional and banding stresses. In this paper, chip flow angle in a groove type and pattern type inserts. The expression for chip flow angle in groove type and pattern type insets is also verified experimentally using high speed filming techniques.

  • PDF

The Inlet Shape Optimization of Aftertreatment System for Diesel Engine with Taguchi Method (다꾸치 방법을 이용한 디젤엔진용 후처리시스템의 입구부 형상 최적화)

  • Jung, Jong-Hwa;Kim, Jong-Hag;Kim, Sang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.145-151
    • /
    • 2012
  • New design of catalytic converter is proposed by optimization of DFSS (Design For Six Sigma) and DOE (Design Of Experiment) method which is based on taguchi matrix. As a result of the optimization of design of catalytic converter, this paper classifies Exhaust-downpipe shapes with 3 parameters to increase flow velocity uniformity of front catalytic substrate face from CFD results. after finishing with L9 Taguchi test matrix, it can be found the main effect of each design parameter of concept model, and optimal design level. in conclusion, it can be increase flow uniformity from 0.60 upto 0.80 with optimal diffuser shape for Turbo-charger.

Optimization of Design of Safety Block by Structural Analysis (구조해석을 통한 안전블록 설계 최적화)

  • Nam, K.W.;Gwon, H.S.;Son, C.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.71-76
    • /
    • 2010
  • The safety block which prevents drop of laborers at high altitude was analyzed by finite element method. Elastic analysis was done by Ansys ver. 11.0. and tetrahedral meshing was used. As load applied more vertically at the fixed face of saw tooth, the stress concentration became smaller and the load distributed broader. When load worked at saw tooth and the shape was more straight to the direction of load, most stresses except principal stress became smaller. When the area of the load increased, principal stress and equivalent stress could be decreased simultaneously. A principal stress and other various stresses occurred in 3D shape, therefore revised model which has smaller equivalent stress than other models shows excellence on the stability and the credibility.

Measurements of 3D Model Shapes for Reverse Designs (역설계를 위한 3차원 모델형상 측정)

  • Doh, Deog-Hee;Cho, Kyeong-Rae;Cho, Yong-Beom
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.55-59
    • /
    • 2012
  • Reverse Design(RD) plays an important role in simulation engineering, such as CFD (Computational Fluid Dynamics) and Virtual Engineering and Design. RD becomes much more valuable when there is no shape data of the practical models for CFD grid generations. In this study, two-camera based rapid prototyping(RP) system is proposed. 3D-PTV based measurement algorithm was adopted. The developed system was applied to reconstruct three-dimensional data of a human face, a motorcycle model, a cylindrical body and a triangular pyramid.

Active earth pressure behind rigid retaining wall rotating about the top (정점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • Paik Kyu-Ho;Sagong Myung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1107-1112
    • /
    • 2004
  • For a rigid retaining wall with rough face, the practical shape of failure surface and arching effect in the backfill must be considered to acquire accurate magnitude and non-linear distribution of active earth pressure acting on the rigid retaining wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the top is proposed considering the practical shape of non-linear failure surface and arching effects. Accuracy of the proposed equation is checked through comparisons of calculations from the proposed equations with existing model test results. The comparisons show that the proposed equations produce satisfactory results.

  • PDF

Performance Improvement of IPM-type BLDC Motor Using the Influx Method of Spatial Harmonic in Air-gap Flux Density (공극 자속밀도의 공간 고조파 유입 방법을 통한 IPM type BLDC Motor의 성능 개선)

  • Lee, Kwang-Hyun;Reu, Jin-Wook;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.739-745
    • /
    • 2011
  • This paper proposes a method for reducing the negative spatial harmonics of the radial flux density of an interior-type permanent magnet (IPM) motor. The reliability of the motor is increased by minimizing its vibrations under dynamic eccentricity (DE) state and normal state due to reduction of a negative spatial harmonics component through the influx of a zero spatial harmonics component in the radial flux density. To minimize the vibrations, optimal notches corresponding to the distribution shape of the magnetic field are designed on the rotor pole face. The variations of vibration computation by finite element method (FEM) and the validity of the analysis and rotor shape design are confirmed by vibration and performance experiments.

Two Dimensional Analysis for Lubrication of the Piston Ring of Internal Combustion Engine (내연기관 피스톤 링의 2차원 윤활 해석)

  • 이재선;한동철;이수목;정균양
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.89-95
    • /
    • 1997
  • This paper considers two dimensional analysis for lubrication between the single piston ring and the cylinder liner. The piston ring is treated as a reciprocating, hydrodynamic bearing with combined sliding and squeeze motion. Reynolds' equation is used, to model lubrication with Reynolds' cavitation boundary condition. This analysis is developed to get the cyclic variation of minimum film thickness and viscous frictional force. Two types of piston ring face shape are considered. This result can be used to study the influence of ring shape design parameter to improve the characteristics of sealing and lubrication.

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 4 - Effect of Dimple Shape (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제4보 - 딤플 형상의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.338-343
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied now to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, the effect of dimple shapes on the lubrication characteristics of parallel thrust bearing are studied using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure and streamline distributions, variations of supporting load, leakage flow rate and friction force, are compared for three different dimple sectional shapes such as circle, pyramid and rectangle type. The lubrication characteristics are highly affected by dimple shapes and number of dimples. The pyramid type dimple shape can support the highest load while the rectangle type is the best in friction reduction.

The cephalometric study of facial types in Class II division 1 malocclusion (앵글 II급 1류 부정교합자의 안모유형에 관한 연구)

  • Jeon, Yun-Ok;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.19 no.1 s.27
    • /
    • pp.201-218
    • /
    • 1989
  • This study was focused on the distribution of different facial types of the Class II division I malocclusion groups and skeletal characteristics of the each group and those that anteropsterior relationship of the maxilla and mandible calculated from the analysis of ANB angle and Wits appraisal was quite different from each other, as well. Cephalometric headplates of 140 persons of Class II division 1 malocclusion whose mean age was 11.2 years and 69 persons of normal occlusion whose mean age was 12.2 years were utilize as materials. Measurements were recorded, tabulated and statistically analyzed employing the tracings of the lateral cephalograms, then Class II division 1 malocclusion group was divided into 9 Types according to the angle of SNA and SNB for the anteroposterior relationship of the maxilla and mandible, another 9 Types according to the FH-NPog and SN-MP for the horisontal and vertical relationship, and the other 9 Types according to the ANB and Wits appraisal for intermaxillary relationship as well, with which was based on $Mean{\pm}$ 1SD of those of normal occlusion. The result allowed the following conclusion: 1. $37.1\%$ of population demonstrated maxilla within nounal range and retrognathic mandible to the cranial base, $30\%$ for both maxilla and mandible within normal range, $20\%$ for retrognathic maxilla and mandible and $12.9\%$ of the rest were ananged in Class II division 1 maloccusion groups. 2. Retrognathic mandible and hyperdivergent face accounted for $30.7\%$, mesognathic mandible and neutrodivergent face for $29.3\%$, mesognathic mandible and hyperdivergent face for $16.4\%$, retrognathic mandible and neutrodivergent face for $13.6\%$, mesognathic mandible and hypodivergent face for $10\%$ of population were computed in Class II division 1 malocclusion groups. 3. It was suggested that skeletal Class II malocclusion might be due to anomaly in size and shape of cranial base, underdevelopment of mandible, retropositioning of mandible, underdevelopment of posterior face against anterior face, or any combination of these factors. 4. Population with underdevelopment and / or retropositioning of the mandible showed hyperdivergent tendency of facia profile. 5. The ANB angle and Wits appraisal did not coincide the severity of anteroposterior dysplasia in $35.7\%$ of Class II division 1 malocclusion group each other, and this inconsistency was suggested to be related with mandibular rotation, inclination of cranial base, and anteroposterior position of the maxilla.

  • PDF