• Title/Summary/Keyword: Face Retrieval

Search Result 54, Processing Time 0.021 seconds

A Comparative Study of Local Features in Face-based Video Retrieval

  • Zhou, Juan;Huang, Lan
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.24-31
    • /
    • 2017
  • Face-based video retrieval has become an active and important branch of intelligent video analysis. Face profiling and matching is a fundamental step and is crucial to the effectiveness of video retrieval. Although many algorithms have been developed for processing static face images, their effectiveness in face-based video retrieval is still unknown, simply because videos have different resolutions, faces vary in scale, and different lighting conditions and angles are used. In this paper, we combined content-based and semantic-based image analysis techniques, and systematically evaluated four mainstream local features to represent face images in the video retrieval task: Harris operators, SIFT and SURF descriptors, and eigenfaces. Results of ten independent runs of 10-fold cross-validation on datasets consisting of TED (Technology Entertainment Design) talk videos showed the effectiveness of our approach, where the SIFT descriptors achieved an average F-score of 0.725 in video retrieval and thus were the most effective, while the SURF descriptors were computed in 0.3 seconds per image on average and were the most efficient in most cases.

Face Image Retrieval by Using Eigenface Projection Distance (고유영상 투영거리를 이용한 얼굴영상 검색)

  • Lim, Kil-Taek
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.43-51
    • /
    • 2009
  • In this paper, we propose an efficient method of face retrieval by using PCA(principal component analysis) based features. The coarse-to-fine strategy is adopted to sort the retrieval results in the lower dimensional eigenface space and to rearrange candidates at high ranks in higher dimensional eigenface space. To evaluate similarity between a query face image and class reference image, we utilize the PD (projection distance), MQDF(modified quadratic distance function) and MED(minimum Euclidean distance). The experimental results show that the proposed method which rearrange the retrieval results incrementally by using projection distance is efficient for face image retrieval.

An Image Retrieval System with Adjustment for Human Subjectivity

  • Fukushima, Shigenobu;Ralescu, Anca
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1309-1312
    • /
    • 1993
  • We present a flexible retrieval system of face photographs based on their linguistic descriptions in terms of fuzzy perdicates. While natural for describing a face, linguistic expressions are also subjective, which affects the retrieval result. Thus, the capability of a retrieval system to adjust to different users becomes very important. In this research we use fuzzy logic techniques, for describing image data, inference for retrieval and adjustment to a new user. Experimental results of the adjustment are also included.

  • PDF

CARA: Character Appearance Retrieval and Analysis for TV Programs

  • Jung Byunghee;Park Sungchoon;Kim Kyeongsoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.237-240
    • /
    • 2004
  • This paper describes a character retrieval system for TV programs and a set of novel algorithms for detecting and recognizing faces for the system. Our character retrieval system consists of two main components: Face Register and Face Recognizer. The Face Register detects faces in video frames and then guides users to register the detected faces of interest into the database. The Face Recognizer displays the appearance interval of each character on the timeline interface and the list of scenes with the names of characters that appear on each scene. These two components also provide a function to modify incorrect results. which is helpful to provide accurate character retrieval services. In the proposed face detection and recognition algorithms. we reduce the computation time without sacrificing the recognition accuracy by using the DCT/LDA method for face feature extraction. We also develop the character retrieval system in the form of plug-in. By plugging in our system to a cataloguing system. the metadata about the characters in a video can be automatically generated. Through this system, we can easily realize sophisticated on-demand video services which provide the search of scenes of a specific TV star.

  • PDF

Face Recognition using the Feature Space and the Image Vector (세그멘테이션에 의한 특징공간과 영상벡터를 이용한 얼굴인식)

  • 김선종
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.821-826
    • /
    • 1999
  • This paper proposes a face recognition method using feature spaces and image vectors in the image plane. We obtain the 2-D feature space using the self-organizing map which has two inputs from the axis of the given image. The image vector consists of its weights and the average gray levels in the feature space. Also, we can reconstruct an normalized face by using the image vector having no connection with the size of the given face image. In the proposed method, each face is recognized with the best match of the feature spaces and the maximum match of the normally retrieval face images, respectively. For enhancing recognition rates, our method combines the two recognition methods by the feature spaces and the retrieval images. Simulations are conducted on the ORL(Olivetti Research laboratory) images of 40 persons, in which each person has 10 facial images, and the result shows 100% recognition and 14.5% rejection rates for the 20$\times$20 feature sizes and the 24$\times$28 retrieval image size.

  • PDF

Detection of face region for an effective News Retrieval (효과적인 뉴스 검색을 위한 얼굴 영역의 추출)

  • 윤일태;정승도;조정원;배영래;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.81-84
    • /
    • 2001
  • The retrieval techniques of multimedia contents have been developed along with MPEG-7. But as human being distinguishes objects with the eyesight, researches for high retrieval efficiency applied a high level computer vision technology are difficult because of the increase of processing time caused by complexity of algorithm, and the difficulty of an implementation. In this paper, for an effective news retrieval using the human face information, we suggest a method which extracts face information like as location, size and number of the face in the news video, and then we prove the validity of method by experiment.

  • PDF

Face Detection and Recognition for Video Retrieval (비디오 검색을 위한 얼굴 검출 및 인식)

  • lslam, Mohammad Khairul;Lee, Hyung-Jin;Paul, Anjan Kumar;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.691-698
    • /
    • 2008
  • We present a novel method for face detection and recognition methods applicable to video retrieval. The person matching efficiency largely depends on how robustly faces are detected in the video frames. Face regions are detected in video frames using viola-jones features boosted with the Adaboost algorithm After face detection, PCA (Principal Component Analysis) follows illumination compensation to extract features that are classified by SVM (Support Vector Machine) for person identification. Experimental result shows that the matching efficiency of the ensembled architecture is quit satisfactory.

  • PDF

Realistic Avatar Face Generation Using Shading Mechanism (음영합성 기법을 이용한 실사형 아바타 얼굴 생성)

  • Park Yeon-Chool
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.79-91
    • /
    • 2004
  • This paper proposes avatar face generation system that uses shading mechanism and facial features extraction method of facial recognition. Proposed system generates avatar face similar to human face automatically using facial features that extracted from a photo. And proposed system is an approach which compose shade and facial features. Thus, it has advantages that can make more realistic avatar face similar to human face. This paper proposes new eye localization method, facial features extraction method, classification method for minimizing retrieval time, image retrieval method by similarity measure, and realistic avatar face generation method by mapping facial features with shaded face pane.

  • PDF

Indexing and Retrieval of Human Individuals on Video Data Using Face and Speaker Recognition

  • Y.Sugiyama;N.Ishikawa;M.Nishida;Y.Ariki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.122-127
    • /
    • 1998
  • In this paper, we focus on the information retrieval of human individuals who are recorded on the video database. Our purpose is to index persons by their faces or voice and to retrieve their existing time sections on the video data. The database system can track as well as extract a face or voice of a certain person and construct a model of the individual person in self-organization mode. If he appears again at different time, the system can put the mark of the same person to the associated frames. In this way, the same person can be retrieved even if the system does not know his exact name. As the face and speaker modeling, a subspace method is employed to improve the indexing accuracy.

  • PDF

Content-based Face Retrieval System using Wavelet and Neural Network (Wavelet과 신경망을 이용한 내용기반 얼굴 검색 시스템)

  • 강영미;정성환
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.265-274
    • /
    • 2001
  • In this paper, we propose a content-based face retrieval system which can retrieve a face based on a facial feature region. Instead of using keyword such as a resident registration number or name for a query, the our system uses a facial image as a visual query. That is, we recognize a face based on a specific feature region including eyes, nose, and mouth. For this, we extract the feature region using the color information based on HSI color model and the edge information from wavelet transformed image, and then recognize the feature region using neural network. The proposed system is implemented on client/server environment based on Oracle DBMS for a large facial image database. In the experiment with 150 various facial images, the proposed method showed about 88.3% recognition rate.

  • PDF