• 제목/요약/키워드: Face Region Detection

검색결과 270건 처리시간 0.027초

퍼지추론을 이용한 얼굴영역 검출 알고리즘 (Face Region Detection Algorithm using Fuzzy Inference)

  • 정행섭;이주신
    • 한국항행학회논문지
    • /
    • 제13권5호
    • /
    • pp.773-780
    • /
    • 2009
  • 본 논문은 픽셀의 색상과 채도를 퍼지추론한 얼굴영역 검출 알고리즘을 제안하였다. 제안한 알고리즘은 조명보정과 얼굴 검출 과정으로 구성되었다. 조명보정 과정에서는 조명변화에 대한 보정기능을 수행한다. 얼굴 검출 과정은 20개의 피부 색상 모델에서 계산된 색상과 채도를 특징 파라미터로 멤버쉽 함수를 생성하여 유사도를 평가하였다. 추출된 얼굴 후보영역을 CMY칼라 모델에서 C요소로 눈을 검출하였고, YIQ 칼라 공간에서 Q요소로 입을 검출하였다. 추출된 얼굴 후보영역에서 일반적인 얼굴에 대한 지식을 기반으로 얼굴 영역을 검출하였다. 입력받은 정면 칼라 영상으로 실험한 결과, 얼굴 영상의 위치와 크기에 관계없이 얼굴 영역이 검출됨을 알 수 있었다.

  • PDF

Automatic face detection using chromaticity space and deformable templates

  • Lee, Kwansu;Lee, Sung-Oh;Lee, Byung-Ju;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.28.1-28
    • /
    • 2001
  • An automatic face recognition(AFR) of individuals is a significant problem in the development of computer vision. An AFR consists of two major parts which are detection of face region and recognition process, and the overall performance of AFR is determined by each. In this paper, the face region is acquired using chromaticity space, but this face region is a simple rectangle which doesn´t consider the shape information. By applying deformable templates to the face region, we can locate the position of the eyes in images. With the face region and the eye location information, more precise face region can be extract from the image. Because processing time is critical in real-time system, we use simplified eye templates and the modified energy function for the efficiency. We can get a good detection performance in experiments.

  • PDF

Real-Time Rotation-Invariant Face Detection Using Combined Depth Estimation and Ellipse Fitting

  • Kim, Daehee;Lee, Seungwon;Kim, Dongmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권2호
    • /
    • pp.73-77
    • /
    • 2012
  • This paper reports a combined depth- and model-based face detection and tracking approach. The proposed algorithm consists of four functional modules; i) color-based candidate region extraction, ii) generation of the depth histogram for handling occlusion, iii) rotation-invariant face region detection using ellipse fitting, and iv) face tracking based on motion prediction. This technique solved the occlusion problem under complicated environment by detecting the face candidate region based on the depth-based histogram and skin colors. The angle of rotation was estimated by the ellipse fitting method in the detected candidate regions. The face region was finally determined by inversely rotating the candidate regions by the estimated angle using Haar-like features that were robustly trained robustly by the frontal face.

  • PDF

AdaBoost와 ASM을 활용한 얼굴 검출 (Face Detection using AdaBoost and ASM)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.105-108
    • /
    • 2018
  • Face Detection is an essential first step of the face recognition, and this is significant effects on face feature extraction and the effects of face recognition. Face detection has extensive research value and significance. In this paper, we present and analysis the principle, merits and demerits of the classic AdaBoost face detection and ASM algorithm based on point distribution model, which ASM solves the problems of face detection based on AdaBoost. First, the implemented scheme uses AdaBoost algorithm to detect original face from input images or video stream. Then, it uses ASM algorithm converges, which fit face region detected by AdaBoost to detect faces more accurately. Finally, it cuts out the specified size of the facial region on the basis of the positioning coordinates of eyes. The experimental result shows that the method can detect face rapidly and precisely, with a strong robustness.

SW 분류기를 이용한 실시간 얼굴 검출 방법 (Real-time Face Detection Method using SVM Classifier)

  • 지형근;이경희;반성범
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.529-532
    • /
    • 2003
  • In this paper, we describe new method to detect face in real-time. We use color information, edge information, and binary information to detect candidate regions of eyes from input image, and then extract face region using the detected eye pall. We verify both eye candidate regions and face region using Support Vector Machines(SVM). It is possible to perform fast and reliable face detection because we can protect false detection through these verification processes. From the experimental results, we confirmed the proposed algorithm shows very excellent face detection performance.

  • PDF

적응적 얼굴검출 및 얼굴 특징자 평가함수를 사용한 실시간 얼굴인식 알고리즘 (Adaptive Face Region Detection and Real-Time Face Identification Algorithm Based on Face Feature Evaluation Function)

  • 이응주;김정훈;김지홍
    • 한국멀티미디어학회논문지
    • /
    • 제7권2호
    • /
    • pp.156-163
    • /
    • 2004
  • 본 논문에서는 적응적 얼굴영역 검출과 얼굴 특징자 평가함수를 사용한 실시간 얼굴인식 알고리즘을 제안하였다. 제안한 알고리즘은 명암도 정보와 타원마스킹 기법뿐만 아니라 인종별 얼굴피부색을 사용하여 정확한 얼굴영역을 적응적으로 검출 가능하다. 또한 제안한 알고리즘은 얼굴 특징자 및 얼굴특징자간 기하학적 평가함수를 사용하여 얼굴 인식 효율을 개선하였다. 제안한 알고리즘은 생체인증 및 보안 시스템 분야에 사용 가능하다. 실험에서는 제안한 방법의 우수성을 입증하기 위해 실 영상을 사용하였으며 실험 결과 기존의 방법보다 얼굴 영역 검출뿐만 아니라 얼굴인식 성능을 개선하였다.

  • PDF

살색 정보와 타원 모양 정보를 이용한 얼굴 검출 기법 (A Face Detection Algorithm using Skin Color and Elliptical Shape Information)

  • 강성화;김휘용;김성대
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(4)
    • /
    • pp.41-44
    • /
    • 2000
  • In this paper, we present an efficient face detection algorithm for locating vertical views of human faces in complex scenes. The algorithm models the distribution of human skin color in YCbCr color space and find various ace candidate regions. Face candidate regions are found by thresholding with predetermined thresholds. For each of these face candidate regions, The sobel edge operator is used to find edge regions. For each edge region, we used an ellipse detection algorithm which is similar to hough transform to refine the candidate region. Finally if a substantial number of he facial features (eye, mouth) are found successfully in the candidate region, we determine he ace candidate region as a face region. e show empirically that the presented algorithm an find the face region very well in the complex scenes.

  • PDF

Multi-Face Detection on static image using Principle Component Analysis

  • Choi, Hyun-Chul;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.185-189
    • /
    • 2004
  • For face recognition system, a face detector which can find exact face region from complex image is needed. Many face detection algorithms have been developed under the assumption that background of the source image is quite simple . this means that face region occupy more than a quarter of the area of the source image or the background is one-colored. Color-based face detection is fast but can't be applicable to the images of which the background color is similar to face color. And the algorithm using neural network needs so many non-face data for training and doesn't guarantee general performance. In this paper, A multi-scale, multi-face detection algorithm using PCA is suggested. This algorithm can find most multi-scaled faces contained in static images with small number of training data in reasonable time.

  • PDF

SVM을 이용한 얼굴 검출 성능 향상 방법 (Performance Improvement Method of Face Detection Using SVM)

  • 지형근;이경희;정용화
    • 정보처리학회논문지B
    • /
    • 제11B권1호
    • /
    • pp.13-20
    • /
    • 2004
  • 실시간 자동 얼굴 인식 기술에 있어서 정확한 얼굴의 검출은 필수적이며, 얼굴 인식의 성능에 큰 영향을 미치는 매우 중요한 부분이다. 본 논문에서는 컬러 정보, 에지 정보 및 이진화 정보를 복합적으로 이용하여 입력 영상으로부터 두 눈의 영역을 검출하고 이를 이용해 얼굴 후보 영역을 검출한다. 검출된 눈 후보 영역과 얼굴 후보 영역에 대하여 얼굴 검증과 눈 검증용으로 학습된 각각의 SVM을 이용하여 검증한다. 이러한 검증 과정을 거침으로써 잘못된 검출을 막아 빠르고 신뢰성 있는 얼굴 검출이 가능하다. 실험을 통해 본 연구에서 제안한 방법이 99% 이상의 얼굴 검출 성공율을 보임을 확인하였다.

Detection of Face Direction by Using Inter-Frame Difference

  • Jang, Bongseog;Bae, Sang-Hyun
    • 통합자연과학논문집
    • /
    • 제9권2호
    • /
    • pp.155-160
    • /
    • 2016
  • Applying image processing techniques to education, the face of the learner is photographed, and expression and movement are detected from video, and the system which estimates degree of concentration of the learner is developed. For one learner, the measuring system is designed in terms of estimating a degree of concentration from direction of line of learner's sight and condition of the eye. In case of multiple learners, it must need to measure each concentration level of all learners in the classroom. But it is inefficient because one camera per each learner is required. In this paper, position in the face region is estimated from video which photographs the learner in the class by the difference between frames within the motion direction. And the system which detects the face direction by the face part detection by template matching is proposed. From the result of the difference between frames in the first image of the video, frontal face detection by Viola-Jones method is performed. Also the direction of the motion which arose in the face region is estimated with the migration length and the face region is tracked. Then the face parts are detected to tracking. Finally, the direction of the face is estimated from the result of face tracking and face parts detection.