International journal of advanced smart convergence
/
v.12
no.4
/
pp.378-385
/
2023
The importance of wearing respiratory protective equipment has been highlighted even more during the COVID-19 pandemic. Even if the suitability of respiratory protection has been confirmed through testing in a laboratory environment, there remains the potential for leakage points in the respirators due to improper application by the wearer, damage to the equipment, or sudden movements in real working conditions. In this paper, we propose a method to detect the occurrence of leak holes by measuring the pressure changes inside the mask according to the wearer's breathing activity by attaching an IoT sensor to a full-face respirator. We designed 9 experimental scenarios by adjusting the degree of leak holes of the respirator and the breathing cycle time, and acquired respiratory data for the wearer of the respirator accordingly. Additionally, we analyzed the respiratory data to identify the duration and pressure change range for each breath, utilizing this data to train a neural network model for detecting leak holes in the respirator. The experimental results applying the developed neural network model showed a sensitivity of 100%, specificity of 94.29%, and accuracy of 97.53%. We conclude that the effective detection of leak holes can be achieved by incorporating affordable, small-sized IoT sensors into respiratory protective equipment.
Electrostatic capacitance measurement method in a fine hose was proposed, in which two ring-type electrodes were disposed on the hose in the direction of fluid flow instead of the conventional face-to-face electrodes. With the proposed electrode structure, we realized a Ringer's solution exhaustion detector for an IV(invasive vein) injection set. On a 4 mm-diameter hose of IV set, we disposed two ring-type electrodes of 10 mm width at a distance of 5 mm each other and obtained 0.72 pF and 2.51 pF for air and 10 % dextrose Ringer's solution in the hose, respectively. The capacitance between the two electrodes varied with the hose-wraparound coverage of electrode as well as the width of electrode and the distance between the electrodes. For hose-wraparound electrode coverage of 75 %, the capacitance varied from 0.62 pF to 1.98 pF with the Ringer's solution level between the two electrodes. A charge amplifier converted the capacitance. variation into electric signal and a comparator was used to detect whether Ringer's solution was exhausted or not. The result was delivered to a host using a RF transmitter with 320 MHz carrier frequency.
In this paper, a robot vision technique is presented to detect obstacles, particularly approaching humans, in the images acquired by a mobile robot that autonomously navigates in a narrow building corridor. A single low-cost color camera is attached to the robot, and a trapezoidal area is set as a region of interest (ROI) in front of the robot in the camera image. The lower parts of a human such as feet and legs are first detected in the ROI from their appearances in real time as the distance between the robot and the human becomes smaller. Then, the human detection is confirmed by detecting his/her face within a small search region specified above the part detected in the trapezoidal ROI. To increase the credibility of detection, a final decision about human detection is made when a face is detected in two consecutive image frames. We tested the proposed method using images of various people in corridor scenes, and could get promising results. This method can be used for a vision-guided mobile robot to make a detour for avoiding collision with a human during its indoor navigation.
The sony Eytoy is developed on Playstation 2 using webcam for detecting human. A user see his appearance in television and become real gamer in the game. It is very different interface compared with ordinary video game which uses joystick. Although Eyetoy already was made for commercial products but the interface method still is interesting and can be added with many techniques like gesture recognition. In this paper, we have developed game interface with image processing for human hand and face detection and with game graphic module. And we realize one example game for busting balloons and demonstrated the game interface abilities. We will open this project for other developers and will be developed very much.
This paper proposes a novel method for detection of hand raising poses from images acquired from a single camera attached to a mobile robot that navigates unknown dynamic environments. Due to unconstrained illumination, a high level of variance in human appearances and unpredictable backgrounds, detecting hand raising gestures from an image acquired from a camera attached to a mobile robot is very challenging. The proposed method first detects faces to determine the region of interest (ROI), and in this ROI, we detect hands by using a HOG-based hand detector. By using the color distribution of the face region, we evaluate each candidate in the detected hand region. To deal with cases of failure in face detection, we also use a HOG-based hand raising pose detector. Unlike other hand raising pose detector systems, we evaluate our algorithm with images acquired from the camera and images obtained from the Internet that contain unknown backgrounds and unconstrained illumination. The level of variance in hand raising poses in these images is very high. Our experiment results show that the proposed method robustly detects hand raising poses in complex backgrounds and unknown lighting conditions.
In this paper, we present an algorithm of real time facial expression and gesture recognition for image sequence on the gray level. A mixture algorithm of a template matching and knowledge based geometrical consideration of a face were adapted to locate the face area in input image. And optical flow method applied on the area to recognize facial expressions. Also, we suggest hand area detection algorithm form a background image by analyzing entropy in an image. With modified hand area detection algorithm, it was possible to recognize hand gestures from it. As a results, the experiments showed that the suggested algorithm was good at recognizing one's facial expression and hand gesture by detecting a dominant motion area on images without getting any limits from the background image.
In this paper, we will present a method to detect human hand and recognize hand gesture. For detecting the hand region, we use the feature of human skin color and hand feature (with boundary complexity) to detect the hand region from the input image; and use algorithm of optical flow to track the hand movement. Hand gesture recognition is composed of two parts: 1. Posture recognition and 2. Motion recognition, for describing the hand posture feature, we employ the Fourier descriptor method because it's rotation invariant. And we employ PCA method to extract the feature among gesture frames sequences. The HMM method will finally be used to recognize these feature to make a final decision of a hand gesture. Through the experiment, we can see that our proposed method can achieve 99% recognition rate at environment with simple background and no face region together, and reduce to 89.5% at the environment with complex background and with face region. These results can illustrate that the proposed algorithm can be applied as a production.
KIPS Transactions on Software and Data Engineering
/
v.2
no.1
/
pp.43-48
/
2013
Adaboost is widely used for Haar-like feature boosting algorithm in Face Detection. It shows very effective performance on single distribution model. But when detecting front and side face images at same time, Adaboost shows it's limitation on multiple distribution data because it uses linear combination of basic classifier. This paper suggest the HDCT, modified decision tree algorithm for Haar-like features. We still tested the performance of HDCT compared with Adaboost on multiple distributed image recognition.
Kim, Jaeseung;Choi, Seyun;Lee, Seunghyun;Kwon, Soonchul
International journal of advanced smart convergence
/
v.10
no.4
/
pp.110-116
/
2021
This paper proposed a real-time earlobe detection system using deep learning on the web. Existing deep learning-based detection methods often find independent objects such as cars, mugs, cats, and people. We proposed a way to receive an image through the camera of the user device in a web environment and detect the earlobe on the server. First, we took a picture of the user's face with the user's device camera on the web so that the user's ears were visible. After that, we sent the photographed user's face to the server to find the earlobe. Based on the detected results, we printed an earring model on the user's earlobe on the web. We trained an existing YOLO v5 model using a dataset of about 200 that created a bounding box on the earlobe. We estimated the position of the earlobe through a trained deep learning model. Through this process, we proposed a real-time earlobe detection system on the web. The proposed method showed the performance of detecting earlobes in real-time and loading 3D models from the web in real-time.
In this paper, we propose a Real-time Interactive Shadow Avatar(RISA) which can express facial emotions changing as response of user's gestures. The avatar's shape is a virtual Shadow constructed from the real-time sampled picture of user's shape. Several predefined facial animations overlap on the face area of the virtual Shadow, according to the types of hand gestures. We use the background subtraction method to separate the virtual Shadow, and a simplified region-based tracking method is adopted for tracking hand positions and detecting hand gestures. In order to express smooth change of emotions, we use a refined morphing method which uses many more frames in contrast with traditional dynamic emoticons. RISA can be directly applied to the area of interface media arts and we expect the detecting scheme of RISA would be utilized as an alternative media interface for DMB and camera phones which need simple input devices, in the near future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.