관심 객체의 인식 및 추적은 컴퓨터 비전 분야의 중요한 영역이다. 본 논문에서는 기존의 Mean-Shift 알고리즘의 고질적인 문제인 유사 히스토그램 분포를 가지는 객체 간 혼동 현상을 해결하는 방법을 제안한다. 피부색 필터링, 얼굴 인식, Mean-Shift 순으로 진행되는 처리 과정에서 각각의 알고리즘 블럭은 다음 진행 알고리즘의 성능을 높이는데 기여한다. 연산 오버헤드가 발생하지 않도록 추적 영역과 유사한 히스토그램 분포를 가지는 영역이 겹쳐질 때에만 화이트 픽셀의 수를 고려해 Viola-Jones 알고리즘을 실행하여 간단한 산술 연산을 통해 Mean-Shift의 수렴성을 높인다. 실험 결과 화이트 픽셀 수가 Mean-Shift의 탐색 반경에서 78%이상이 되면 Viola-Jones 알고리즘이 수행되도록 설정하였을 때 얼굴 영역 인식이 되는 경우에 한해서 객체 추적은 100% 성공하였다.
Vitiligo is a condition characterized by the destruction or dysfunction of melanin-producing cells in the skin, resulting in a loss of skin pigmentation. Facial vitiligo, specifically affecting the face, significantly impacts patients' appearance, thereby diminishing their quality of life. Evaluating the efficacy of facial vitiligo treatment typically relies on subjective assessments, such as the Facial Vitiligo Area Scoring Index (F-VASI), which can be time-consuming and subjective due to its reliance on clinical observations like lesion shape and distribution. Various machine learning and deep learning methods have been proposed for segmenting vitiligo areas in facial images, showing promising results. However, these methods often struggle to accurately segment vitiligo lesions irregularly distributed across the face. Therefore, our study introduces a framework aimed at improving the segmentation of vitiligo lesions on the face and providing an evaluation of vitiligo lesions. Our framework for facial vitiligo segmentation and lesion evaluation consists of three main steps. Firstly, we perform face detection to minimize background areas and identify the face area of interest using high-quality ultraviolet photographs. Secondly, we extract facial area masks and vitiligo lesion masks using a semantic segmentation network-based approach with the generated dataset. Thirdly, we automatically calculate the vitiligo area relative to the facial area. We evaluated the performance of facial and vitiligo lesion segmentation using an independent test dataset that was not included in the training and validation, showing excellent results. The framework proposed in this study can serve as a useful tool for evaluating the diagnosis and treatment efficacy of vitiligo.
For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.
Many recent events, such as terrorist attacks, exposed defects in most sophisticated security systems. Therefore, it is necessary to improve security data systems based on the body or behavioral characteristics, often called biometrics. Together with the growing interest in the development of human and computer interface and biometric identification, human face recognition has become an active research area. Face recognition appears to offer several advantages over other biometric methods. Nowadays, Principal Component Analysis (PCA) has been widely adopted for the face recognition algorithm. Yet still, PCA has limitations such as poor discriminatory power and large computational load. This paper proposes a novel algorithm for face recognition using a mid band frequency component of partial information which is used for PCA representation. Because the human face has even symmetry, half of a face is sufficient for face recognition. This partial information saves storage and computation time. In comparison with the traditional use of PCA, the proposed method gives better recognition accuracy and discriminatory power. Furthermore, the proposed method reduces the computational load and storage significantly.
얼굴은 사람을 확인할 수 있는 고유한 성질을 갖고 있어 얼굴 인식이 출입통제, 범죄자 검색, 방법용 CCTV 같은 보안 영역과 본인 인증 영역에 활발히 활용되고 있다. 정면 얼굴 영상은 가장 많은 얼굴 정보를 갖고 있어 얼굴 인식을 위해 가능한 정면 얼굴 영상을 취득하는 것이 필요하다. 본 연구에서 하르유사 특징을 이용한 Adaboost 알고리즘을 이용해 얼굴 영역이 검출되고 mean-shift 알고리즘을 이용해 얼굴을 추적한다. 그리고 얼굴 영역에서 눈과 입 같은 얼굴 요소들의 특징점들을 추출해 그들의 기하학적인 정보를 이용해 두 눈의 비와 얼굴의 회전 정도를 계산하고 실시간으로 근사 정면 얼굴 영상을 제시한다.
얼굴검출 과정은 영상 모니터링에서 매우 중요한 과정이며 생체 인식 기술의 한 종류이다. 검출과정은 변수가 많고 복잡하여 하드웨어가 발전하고 있는 근래에 와서 소프트웨어적인 발전이 이루어지고 있다. CCTV를 이용하는 분야 중 얼굴 검출 기술은 얼굴을 분석하기 이전에 실행되는 과정으로 영상에서 얼굴이 있는 곳을 찾아내는 기술이다. 사람의 얼굴은 조명이나 피부 색, 방향과 각도, 표정 등 여러 가지 환경적 조건에 따라 민감한 반응을 하기 때문에, 얼굴 검출에 관한 연구는 많은 어려움이 있다. 얼굴 검출 기술의 활용성과 중요성은 시간이 지날수록 각광받고 있으나, 얼굴 검출 이전에 선행되어야 하는 얼굴 영역 검출 기술에 대해서는 간과하는 측면이 많다. 본 논문의 시스템은 AdaBoost detector에서 검출 못하는 기울어진 얼굴을 검출할 수 있어 다른 사물의 검출도 같은 기술을 사용할 수 있을 것이다.
본 논문은 3차원 얼굴 영상으로부터 등고선 영역을 추출하여 얼굴의 지역적 특징이 잘 반영되는 투영 벡터를 이용한 얼굴 인식 알고리즘을 제안한다. 얼굴의 외곽 형상은 사람에 따라 비슷한 모양을 나타내므로 구분하는데 어려움이 많다. 그러나 3차원 얼굴 영상은 깊이 정보를 갖고 있으므로, 코로부터 일정 깊이 값에 대한 영역을 추출하면 사람마다 다른 형상이 추출 될 수 있다. 얼굴 내에서 가장 높은 코를 먼저 추출한 후, 이를 기준으로 깊이 값을 취하면, 코를 포함한 얼굴 내의 등고선 영역을 추출하였다. 이 영역 또한 비슷한 형상을 나타낼 수 있으므로, 논문에서는 영상을 투영한 후 투영 벡터의 국부화를 통하여 영상의 지역적 특성이 잘 반영되는 통계적 성질의 투영 벡터 방법을 사용하여 특징 벡터를 추출하였다. 제안된 방법을 이용한 유사도 비교는 입력과 데이터 베이스에 대하여 각각 두개의 깊이 데이터에 대해 유클리드 거리를 사용하였으며, 실험 결과 5위 이내의 인식률이 94.3%로 나타났다.
본 논문에서는 로봇의 시각시스템에 효과적으로 적용할 수 있는 얼굴 추적 방법을 제안하였다. 제안한 알고리즘은 동영상의 움직임 영역을 검출한 후 얼굴 영역을 추적한다. 동영상의 움직임 검출은 연속되는 2개의 프레임을 사용하여 차영상을 구한 후, 잡음을 제거하기 위한 방법으로 메디안 필터와 침식 및 팽창연산을 사용하여 움직임 영역을 검출한다. 움직임 영역에서 피부색을 추출하기 위하여 표본영상의 칼라 정보를 이용하였다. 칼라정보의 MIN-MAX값을 퍼지화 데이터로 멤버십 함수를 생성한 후, 유사도를 평가하여 피부색 영역과 배경영역을 분리하였다. 얼굴 후보영역에 대하여 CMY 칼라 공간 C 채널에서 눈을 검출하고, YIQ 칼라 공간 Q 채널에서 입을 검출하였다. 지식기반으로 검출된 눈과 입의 특징을 찾아가며 얼굴영역을 추적하였다. 실험영상으로는 10명 각각에 대하여 150프레임의 동영상 총 1,500프레임을 입력받아 실험한 결과, 1,435프레임의 영상에 대하여 움직임 영역이 검출되어 95.7%의 프레임 검출율을 보였으며, 1,401개에 대한 얼굴을 추적 97.6%의 우수한 얼굴 추적결과를 나타내었다.
본 논문에서는 기존 평행좌표를 이용하는 얼굴영상 대신 극 좌표계 변환을 이용한 얼굴 인식 방법을 제안한다. 이 방법은 얼굴의 중심부분의 한 점을 극으로 삼아 이 점을 기준으로 360도의 각 방향으로 일정 길이만큼 얼굴 영상을 샘플링하여 새로운 얼굴 영상을 제작하고 이를 바탕으로 기존의 특징 추출 방법들을 이용하여 얼굴 인식의 성능을 높인다. 극 좌표계의 특성상 극에 가까운 부분은 세밀하게 묘사되고 극에서 멀리 떨어질수록 영상의 정확도가 떨어진다. 일반적으로 얼굴 영상은 얼굴의 중심부에 가까운 영역에 눈, 코, 입 등의 주요 부위가 밀집되어 있다. 따라서 이러한 극 좌표계를 얼굴영상에 적용한다면 같은 화소를 이용하는 기존 평행좌표를 사용할 때보다 눈, 코, 입 등 주요 부위를 보다 세밀하게 표현할 수 있다는 장점을 갖는다. 제안된 방법을 Yale데이터와 FRGC데이터에 적용한 후 기존의 특징 추출 방법인 LDA와 NLDA를 이용하여 얼굴인식을 수행한 결과 평행좌표에 기반한 원 영상을 그대로 사용했을 때 보다 인식률이 향상됨을 확인할 수 있었다.
Purpose: The golden ratio has been used for a long time to objectify and quantify 'beauty'. Dr. Marqurardt claims that the golden ratio can be applied in the maxillofacial field as well. The purpose of this study was to evaluate the diagnostic significance of using a facial 'phi' mask for analyzing Korean faces with characteristics of Class I, II, and III malocclusion. Methods: We studied twenty five Korean celebrities' frontal facial photos (10 males, 15 females) and 90 malocclusion patients' frontal facial photos (30 patients in each malocclusion classification: Class I, Class II, and Class III). Patients who received orthodontic treatment at Samsung Medical Center were selected for this study. After superimposition of the selected facial photo and facial 'phi' mask using Adobe Photoshop CS3, the ratio of the entire facial area, mid facial area, lower facial area and horizontal and vertical lengths were measured. Results: The facial ratio in photos of Korean faces showed larger vertical and horizontal ratios than the facial 'phi' mask with golden ratio, regardless of skeletal malocclusion (entire face: 115%, lower face: 125% larger than the mask). The results of the frontal photos of Class I, II, and III malocclusion patients using facial 'phi' mask showed that the vertical length and frontal face area was more significantly influenced by the area of the lower face than the midface. This means that the lower face has larger proportions in the facial areas. Conclusion: The ratio of facial 'phi' mask is matched with the ideal facial appearance that the contemporary Korean general public is seeking. Thus, the facial 'phi' mask may be a convenient tool for esthetic analysis of Korean faces. Reducing the area of the lower face is esthetically more desirable for almost all Korean people when planning orthognathic surgery.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.