Improved Real-Time Mean-Shift Face Tracking by Readjusting Detected Face Region Histogram

검출된 얼굴 영역 히스토그램 재조정을 통한 개선된 실시간 평균이동 얼굴 추적 방식

  • Kim, Gui-sik (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Lee, Jae-sung (Department of Electronic Engineering, Korea National University of Transportation)
  • 김귀식 (한국교통대학교 전자공학과) ;
  • 이재성 (한국교통대학교 전자공학과)
  • Published : 2013.10.25

Abstract

Recognition and Tracking of interesting object is the significant field in Computer Vision. Mean-Shift algorithm have chronic problems that some errors are occurred when histogram of tracking area is similar to another area. in this paper, we propose to solve the problem. Each algorithm blocks skin color filtering, face detect and Mean-Shift started consecutive order assists better operation of the next algorithm. Avoid to operations of the overhead of tracking area similar to a histogram distribution areas overlap only consider the number of white pixels by running the Viola-Jones algorithm, simple arithmetic increases the convergence of the Mean-Shift. The experimental results, it comes to 78% or more of white pixels in the Mean-Shift search area, only if the recognition of the face area when it is configured to perform a Viola-Jones algorithm is tracking the object, was 100 percent successful.

관심 객체의 인식 및 추적은 컴퓨터 비전 분야의 중요한 영역이다. 본 논문에서는 기존의 Mean-Shift 알고리즘의 고질적인 문제인 유사 히스토그램 분포를 가지는 객체 간 혼동 현상을 해결하는 방법을 제안한다. 피부색 필터링, 얼굴 인식, Mean-Shift 순으로 진행되는 처리 과정에서 각각의 알고리즘 블럭은 다음 진행 알고리즘의 성능을 높이는데 기여한다. 연산 오버헤드가 발생하지 않도록 추적 영역과 유사한 히스토그램 분포를 가지는 영역이 겹쳐질 때에만 화이트 픽셀의 수를 고려해 Viola-Jones 알고리즘을 실행하여 간단한 산술 연산을 통해 Mean-Shift의 수렴성을 높인다. 실험 결과 화이트 픽셀 수가 Mean-Shift의 탐색 반경에서 78%이상이 되면 Viola-Jones 알고리즘이 수행되도록 설정하였을 때 얼굴 영역 인식이 되는 경우에 한해서 객체 추적은 100% 성공하였다.

Keywords