• Title/Summary/Keyword: Face Accuracy

Search Result 564, Processing Time 0.028 seconds

Implementation of Face Detection System on Android Platform for Real-Time Applications (실시간 응용을 위한 안드로이드 플랫폼에서의 안면 검출 시스템 구현)

  • Han, Byung-Gil;Lim, Kil-Taek
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.3
    • /
    • pp.137-143
    • /
    • 2013
  • This paper describes an implementation of face detection technology for a real-time application on the Android platform. Java class of Face-Detection for detection of human face is provided by the Android API. However, this function is not suitable to apply for the real-time applications due to inadequate detection speed and accuracy. In this paper, the AdaBoost based classification method which utilizes Local Binary Pattern (LBP) histogram is employed for face detection. The face detection module has been developed by C/C++ language for high-speed image processing, and this module is included to the Android platform using the Java Native Interface (JNI). The experiments were carried out in the Java-based environment and JNI-based environment. The experimental results have shown that the performance of JNI-based is faster than Java-based method and our system is well enough to apply for real-time applications.

Near-infrared face recognition by fusion of E-GV-LBP and FKNN

  • Li, Weisheng;Wang, Lidou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.208-223
    • /
    • 2015
  • To solve the problem of face recognition with complex changes and further improve the efficiency, a new near-infrared face recognition algorithm which fuses E-GV-LBP and FKNN algorithm is proposed. Firstly, it transforms near infrared face image by Gabor wavelet. Then, it extracts LBP coding feature that contains space, scale and direction information. Finally, this paper introduces an improved FKNN algorithm which is based on spatial domain. The proposed approach has brought face recognition more quickly and accurately. The experiment results show that the new algorithm has improved the recognition accuracy and computing time under the near-infrared light and other complex changes. In addition, this method can be used for face recognition under visible light as well.

Point Recognition Precision Test of 3D Automatic Face Recognition Apparatus(3D-AFRA) (3차원 안면자동인식기(3D-AFRA)의 안면 표준점 인식 정확도 검증)

  • Seok, Jae-Hwa;Cho, Kyung-Rae;Cho, Yong-Beum;Yoo, Jung-Hee;Kwak, Chang-Kyu;Hwang, Min-U;Kho, Byung-Hee;Kim, Jong-Won;Kim, Kyu-Kon;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.1
    • /
    • pp.50-59
    • /
    • 2007
  • 1. Objectives The Face is an important standard for the classification of Sasang Contitutions. Now We are developing 3D Automatic Face Recognition Apparatus to analyse the facial characteristics. This apparatus show us 3D image of man's face and measure facial figure. We should examine accuracy of position recognition in 3D Automatic Face Recognition Apparatus(3D-AFRA). 2. Methods We took a photograph of Face status with Land Mark by using 3D-AFRA. And We scanned Face status by using laser scanner(vivid 700). We analysed error average of distance between Facial Definition Points. We compare the average between using 3D-AFRA and using laser scanner. So We examined the accuracy of position recognition in 3D-AFRA at indirectly. 3. Results and Conclusions The error average of distance between Right Pupil and The Other Facial Definition Points is 0.5140mm and the error average of distance between Left Pupil and The Other Facial Definition Points is 0.5949mm in frontal image of face. The error average of distance between Left Pupil and The Other Facial Definition Points is 0.5308mm and the error average of distance between Left Tragion and The Other Facial Definition Points is 0.6529mm in laterall image of face. In conclusion, We assessed that accuracy of position recognition in 3D-AFRA is considerably good.

  • PDF

Anthropomorphic Animal Face Masking using Deep Convolutional Neural Network based Animal Face Classification

  • Khan, Rafiul Hasan;Lee, Youngsuk;Lee, Suk-Hwan;Kwon, Oh-Jun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.558-572
    • /
    • 2019
  • Anthropomorphism is the attribution of human traits, emotions, or intentions to non-human entities. Anthropomorphic animal face masking is the process by which human characteristics are plotted on the animal kind. In this research, we are proposing a compact system which finds the resemblance between a human face and animal face using Deep Convolutional Neural Network (DCNN) and later applies morphism between them. The whole process is done by firstly finding which animal most resembles the particular human face through a DCNN based animal face classification. And secondly, doing triangulation based morphing between the particular human face and the most resembled animal face. Compared to the conventional manual Control Point Selection system using an animator, we are proposing a Viola-Jones algorithm based Control Point selection process which detects facial features for the human face and takes the Control Points automatically. To initiate our approach, we built our own dataset containing ten thousand animal faces and a fourteen layer DCNN. The simulation results firstly demonstrate that the accuracy of our proposed DCNN architecture outperforms the related methods for the animal face classification. Secondly, the proposed morphing method manages to complete the morphing process with less deformation and without any human assistance.

Non-Contact Heart Rate Monitoring from Face Video Utilizing Color Intensity

  • Sahin, Sarker Md;Deng, Qikang;Castelo, Jose;Lee, DoHoon
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Heart Rate is a crucial physiological parameter that provides basic information about the state of the human body in the cardiovascular system, as well as in medical diagnostics and fitness assessments. At present day, it has been demonstrated that facial video-based photoplethysmographic signal captured using a low-cost RGB camera is possible to retrieve remote heart rate. Traditional heart rate measurement is mostly obtained by direct contact with the human body, therefore, it can result inconvenient for long-term measurement due to the discomfort that it causes to the subject. In this paper, we propose a non-contact-based remote heart rate measuring approach of the subject which depends on the color intensity variation of the subject's facial skin. The proposed method is applied in two regions of the subject's face, forehead and cheeks. For this, three different algorithms are used to measure the heart rate. i.e., Fast Fourier Transform (FFT), Independent Component Analysis (ICA) and Principal Component Analysis (PCA). The average accuracy for the three algorithms utilizing the proposed method was 89.25% in both regions. It is also noteworthy that the FastICA algorithm showed a higher average accuracy of more than 92% in both regions. The proposed method obtained 1.94% higher average accuracy than the traditional method based on average color value.

Gate Management System by Face Recognition using Smart Phone (스마트폰을 이용한 얼굴인식 출입관리 시스템)

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.9-15
    • /
    • 2011
  • In this paper, we design and implement of gate management system by face recognition using smart phone. We investigate various algorithms for face recognition on smart phones. First step in any face recognition system is face detection. We investigated algorithms like color segmentation, template matching etc. for face detection, and Eigen & Fisher face for face recognition. The algorithms have been first profiled in MATLAB and then implemented on the Android phone. While implementing the algorithms, we made a tradeoff between accuracy and computational complexity of the algorithm mainly because we are implementing the face recognition system on a smart phone with limited hardware capabilities.

Face Recognition by Fiducial Points Based Gabor and LBP Features (특징점기반 Gabor 및 LBP 피쳐를 이용한 얼굴 인식)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • The accuracy of a real facial recognition system can be varied according to the accuracy of the eye detection algorithm when we design and implement a semi-automatic facial recognition algorithm depending on the eye position of a database. In this paper, a fully automatic facial recognition algorithm is proposed such that Gabor and LBP features are extracted from fiducial points of a face graph which was created by using fiducial points based on the eyes, nose, mouth and border lines of a face, fitted on the face image. In this algorithm, the recognition performance could be increased because a face graph can be fitted on a face image automatically and fiducial points based LPB features are implemented with the basic Gabor features. The simulation results show that the proposed algorithm can be used in real-time recognition for more than 1,000 faces and produce good recognition performance for each data set.

Face Detection Using Shapes and Colors in Various Backgrounds

  • Lee, Chang-Hyun;Lee, Hyun-Ji;Lee, Seung-Hyun;Oh, Joon-Taek;Park, Seung-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.19-27
    • /
    • 2021
  • In this paper, we propose a method for detecting characters in images and detecting facial regions, which consists of two tasks. First, we separate two different characters to detect the face position of the characters in the frame. For fast detection, we use You Only Look Once (YOLO), which finds faces in the image in real time, to extract the location of the face and mark them as object detection boxes. Second, we present three image processing methods to detect accurate face area based on object detection boxes. Each method uses HSV values extracted from the region estimated by the detection figure to detect the face region of the characters, and changes the size and shape of the detection figure to compare the accuracy of each method. Each face detection method is compared and analyzed with comparative data and image processing data for reliability verification. As a result, we achieved the highest accuracy of 87% when using the split rectangular method among circular, rectangular, and split rectangular methods.

A Study on Characteristics of Dimensional Accuracy using Planning Number of Machining in Machining Center (머시닝센터 평면가공 시 가공횟수에 따른 치수정밀도 특성에 관한 연구)

  • Yang, Yong-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.61-67
    • /
    • 2018
  • The face milling cutter, which is mainly used for the face milling, is used to cut the Carbon steel(SM20C) in the machining center for 5 times and 10 times respectively. This study clarify the dimensional accuracy characteristics according to the number of fine machining varied the condition of cutting depth, table feed speed and spindle speed. Cutting depth is varied 0.05~0.2mm, table feed speed is varied 0.05~0.2mm/min and spindle speed is varied 1500~2500rpm. As a result, the dimensional accuracy was stable 6 times machining with table feed speed 150mm/min and 10 times machining with table speed 100mm/min and cutting depth 0.05mm regardless times of machining.

Untact Face Recognition System Based on Super-resolution in Low-Resolution Images (초고해상도 기반 비대면 저해상도 영상의 얼굴 인식 시스템)

  • Bae, Hyeon Bin;Kwon, Oh Seol
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.412-420
    • /
    • 2020
  • This paper proposes a performance-improving face recognition system based on a super resolution method for low-resolution images. The conventional face recognition algorithm has a rapidly decreased accuracy rate due to small image resolution by a distance. To solve the previously mentioned problem, this paper generates a super resolution images based o deep learning method. The proposed method improved feature information from low-resolution images using a super resolution method and also applied face recognition using a feature extraction and an classifier. In experiments, the proposed method improves the face recognition rate when compared to conventional methods.