• Title/Summary/Keyword: Facade Rigger

Search Result 2, Processing Time 0.015 seconds

Optimum Rigger Locations for Highrise Braced Frames with Facade Riggers (여러 개의 파사드리거를 갖는 고층구조물에서 리거의 최적위치)

  • Jung, Dong-Jo;Yuk, Min-Hye;Lim, Byung-Taeg;Kim, Seok-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.137-146
    • /
    • 2007
  • Numerical analyses are performed to show the effect of stiffening facade riggers on the behavior of the structure and to investigate the optimum locations of facade riggers. Optimum locations of the facade riggers to minimize the drift at the top of the structure are obtained by maximizing the drift reduction caused by the facade riggers and are significantly influenced by the bending and shear stiffnesses of the braced frame and facade riggers. Three standard load cases of uniformal and triangularly distributed lateral loads as well as a lateral point load at the top of the structure are considered in this paper Optimum locations of facade riggers are plotted as functions of nondimensional relative stiffness parameters ${\omega}$ and ${\beta}$ for structures with one to four riggers. Although the analysis presented herein is based on certain simplifying assumptions, it is believed that the results do provide sufficiently accurate information for determining the optimum locations of facade riggers in highrise structures.

Forces and Displacements of Highrise Braced Frames with Facade Riggers (여러개의 파사드리거를 갖는 고층구조물의 응력과 변위)

  • Yuk, Min-Hye;Jung, Dong-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.181-190
    • /
    • 2005
  • In the conventional outrigger system, the outriggers are located in the planes of the core walls and this system has disadvantage of obstructing flexibility in the interior layout. But thc facade riggers in the structure uc located In the exterior frames in the direction of the lateral loading. The interaction between the traced frames and facade riggers is through the floor diaphragms adjacent to the chords of the riggers. This paper presents an approximate analysis technique lot preliminary analysis of multiple facade rigger stiffened braced frames in tall buildings subjected to uniformly and triangularly distributed loads as well as a lateral point load at the top of the structure. Comparisons with the results by the program MIDAS for the structural models have shown that this analysis can give reasonably accurate results for highrise braced frames with multiple facade riggers. The method allows a simple procedure for obtaining the optimum level of the facade riggers in addition to a rapid assessment of the influence of the facade riggers on the performance of the highrise structure such as the reduction in lateral deflection at the top and the overturning moment at the base of the braced frame.