• Title/Summary/Keyword: Fabrication methods

Search Result 994, Processing Time 0.038 seconds

Comparison of flux and natural sapphire after heat-treatment (열처리 후 플럭스 사파이어와 천연 사파이어의 비교 분석)

  • Kim, Ki-In;Ahn, Yong-Kil;Seo, Jin-Gyo;Park, Jong-Wan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.152-158
    • /
    • 2009
  • Various fabrication methods have been used to synthesize sapphire which has qualities of jewelry well beyond the industrial class. Among them, the flux sapphire of Chatham Company which has as high value as jewelry was selected in order to compare natural and synthetic sapphire. First, the WD-XRF (Wavelength dispersive x-ray fluorescence spectrometer) was used to analyze the chemical composition of natural and synthetic sapphire. Although natural sapphire had very diverse chemical compositions, flux sapphire had small quantities of Mo, Pt and Pb elements in addition to the similar chemical ingredients to natural one. Pt is decisive proof of flux sapphire. Next, by investigating spectroscopic characteristics using UV-VIS Spectrophotometer after heat treatment at high temperatures of $1300^{\circ}C$ and $1500^{\circ}C$, the variation of 690 nm absorbance related to $Cr^{3+}$ was detected in the natural sapphire while those of the 690 nm absorbance (related to $Cr^{3+}$) as well as absorbance of 376 nm and 388 nm ($Fe^{3+}$) were seen in the flux sapphire. It was found that the difference in the absorbance variation of flux sapphire is greater than that of natural sapphire after heat treatment. The chemical composition and spectrum analysis were utilized to compare the natural sapphire and the flux synthetic sapphire.

REMOVABLE FLEXIBLE DENTURE FOR CHILDREN WITH OLIGODONTIA : A CASE REPORT (탄성의치를 사용한 부분무치증 환아의 보철적 수복)

  • Kim, Jin-Young;Lee, Kwang-Hee;La, Ji-Young;Lee, Dong-Jin;An, So-Youn;Kim, Yun-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.1
    • /
    • pp.150-156
    • /
    • 2009
  • Objectives : The conventional removable appliance, composed of wires and acrylic resin, had unaesthetic results and poor retention. The flexible denture, as an alternative, presents improved aesthetics with the thin and strong resin retentive area. In addition, it also enhances patients' sensory function as a result of decreased volume of denture base. The flexibility of the flexible denture reduces the possibility of fracture and distributes the masticatory forces transmitted to the abutments and residual bone tissue. This report describes a 10-year-old girl and a 6-year-old boy with oligodontia treated with the flexible dentures as an alternative to conventional removable appliances. Methods : Impression was taken using alginate material and sent to a laboratory with the bite for fabrication of the flexible denture. Prior to try-in, the flexible denture was immersed in water at $90^{\circ}C$ for one minute and cooled. Impinging area of the denture was checked by $Fit-Checker^{(R)}$ and removed and the denture was delivered to the patient. Results : Both patients were satisfied with the flexible dentures, which presented improved retention and aesthetics. Conclusion : For patients with oligodontia, flexible dentures can be considered as a treatment of choice, which may replace the conventional denture.

  • PDF

Chairside computer-aided design/computer-aided manufacturing (CAD/CAM)-based restoration of anterior teeth with customized shade and surface characterization: a report of 2 cases (CAD/CAM을 이용한 전치부 수복시 색조 및 표면 특성의 개별화를 시행한 증례)

  • Kim, Hyun-Jung;Jang, Ji-Hyun;Ryu, Gil-Joo;Choi, Kyoung-Kyu;Kim, Duck-Su
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.2
    • /
    • pp.128-137
    • /
    • 2020
  • Over the last 30 years, the use of chairside computer-aided design (CAD) and computer-aided manufacturing (CAM) systems has evolved and has become increasingly popular in dentistry. Although CAD/CAM restorations have been used in the anterior dentition, satisfying the esthetic requirements of clinicians and patients, where the restorations are limited to the chairside, remains a challenge. To reproduce multi-shades of CAD/CAM restorations in the clinic, a preliminary experiment to express several shades on A2 lithium disilicate (LS2) blocks using a staining kit was performed. After measurement of the CIE L*a*b* value of specimens, it was compared with that of the commercial shade guide. This report presents two cases with individual customization of shade and surface characterization of the CAD/CAM restorations using predictable methods based on the preliminary experimental data. The anatomical shape of restoration was obtained from 'copy and paste technique' and 'mirror image acquisition technique'. All treatment procedures and fabrication of restorations performed in this report were executed in the clinic itself.

Fabrication of a Patient-Customized Helmet with a Three-Dimensional Printer for Radiation Therapy of Scalp

  • Oh, Se An;Lee, Chang Min;Lee, Min Woo;Lee, Yeong Seok;Lee, Gyu Hwan;Kim, Seong Hoon;Kim, Sung Kyu;Park, Jae Won;Yea, Ji Woon
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.100-105
    • /
    • 2017
  • The purpose of the present study was to develop and evaluate patient-customized helmets with a three-dimensional (3D) printer for radiation therapy of malignant scalp tumors. Computed tomography was performed in a case an Alderson RANDO phantom without bolus (Non_Bolus), in a case with a dental wax bolus on the scalp (Wax_Bolus), and in a case with a patient-customized helmet fabricated using a 3D printer (3D Printing_Bolus); treatment plans for each of the 3 cases were compared. When wax bolus was used to fabricate a bolus, a drier was used to apply heat to the bolus to make the helmet. $3-matic^{(R)}$ (Materialise) was used for modeling and polyamide 12 (PA-12) was used as a material, 3D Printing bolus was fabricated using a HP JET Fusion 3D 4200. The average Hounsfield Unit (HU) for the Wax_Bolus was -100, and that of the 3D Printing_Bolus was -10. The average radiation doses to the normal brain with the Non_Bolus, Wax_Bolus, and 3D Printing_Bolus methods were 36.3%, 40.2%, and 36.9%, and the minimum radiation dose were 0.9%, 1.6%, 1.4%, respectively. The organs at risk dose were not significantly difference. However, the 95% radiation doses into the planning target volume (PTV) were 61.85%, 94.53%, and 97.82%, and the minimum doses were 0%, 77.1%, and 82.8%, respectively. The technique used to fabricate patient-customized helmets with a 3D printer for radiation therapy of malignant scalp tumors is highly useful, and is expected to accurately deliver doses by reducing the air gap between the patient and bolus.

Effect of Saw-Damage Etching Conditions on Flexural Strength in Si Wafers for Silicon Solar Cells (태양전지용 실리콘 기판의 절삭손상 식각 조건에 의한 곡강도 변화)

  • Kang, Byung-Jun;Park, Sung-Eun;Lee, Seung-Hun;Kim, Hyun-Ho;Shin, Bong-Gul;Kwon, Soon-Woo;Byeon, Jai-Won;Yoon, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.617-622
    • /
    • 2010
  • We have studied methods to save Si source during the fabrication process of crystalline Si solar cells. One way is to use a thin silicon wafer substrate. As the thickness of the wafers is reduced, mechanical fractures of the substrate increase with the mechanical handling of the thin wafers. It is expected that the mechanical fractures lead to a dropping of yield in the solar cell process. In this study, the mechanical properties of 220-micrometer-solar grade Cz p-type monocrystalline Si wafers were investigated by varying saw-damage etching conditions in order to improve the flexural strength of ultra-thin monocrystalline Si solar cells. Potassium hydroxide (KOH) solution and tetramethyl ammonium hydroxide (TMAH) solution were used as etching solutions. Etching processes were operated with a varying of the ratio of KOH and TMAH solutions in different temperature conditions. After saw-damage etching, wafers were cleaned with a modified RCA cleaning method for ten minutes. Each sample was divided into 42 pieces using an automatic dicing saw machine. The surface morphologies were investigated by scanning electron microscopy and 3D optical microscopy. The thickness distribution was measured by micrometer. The strength distribution was measured with a 4-point-bending tester. As a result, TMAH solution at $90^{\circ}C$ showed the best performance for flexural strength.

Preliminary Research on the Implementation of Information of Human Facial Part Required for the 3D Printing of Eye Shield (안구차폐체 제작에 필요한 안면부 3차원 정보 구현의 기초연구)

  • Choi, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.955-960
    • /
    • 2019
  • The Computed tomography (CT) scan can have high radiation in a few tests, and this risk is significant given that it is often repeated in one patient. In children, the incidence of radiation-induced cancer is reported because organs are growing, are more sensitive to radiation. 3D printing has recently been studied to be applied to various applications as a research field for 3D printing applications, research on fabrication of radiation shields and materials has been conducted. The purpose of the 3D printer is to replace the existing panel-type shields and to make customized designs according to the shape of the human body. Therefore, research on 3D information processing to be input to the 3D printer is also necessary. In this study, 3D data of the human body surface, which is the preliminary step of the manufacture of patient-specific eye shield using stereo vision depth map technology, was studied. This study aims to increase the possibility of three-dimensional output. As a result of experimenting with this method, which is relatively simple compared with other methods of 3D information processing, the minimum coordinates for 3D information are extracted. The results of this study provided the advantages and limitations of stereo images using natural light and will be the basic data for the manufacture of eye shields in the future.

The Growth of Human Osteoblasts in Culture Dishes Made with Poly-glycolic Acid Containing Fetal Bovine Serum (우태아 혈청이 포함된 Poly-glycolic Acid 배양판에서 인간 조골세포의 성장)

  • Choi, Jae Won;Kim, Yong Ha;Moon, Young Mi;Kim, Yoen Jung;Choi, Sik Young
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.612-615
    • /
    • 2006
  • Purpose: An ideal bony construct can be divided into two broad categories: (1) the design and fabrication of biodegradable, biomimetic scaffolds that provide correct signals to induce osteogenesis: (2) the identification of an ideal source of osteoprogenitor cells to seed onto the scaffold. We selected poly-glycolic acid as a synthetic scaffold among various scaffolds because of these properties. Meanwhile, culture medium is supplemented with fetal bovine serum(FBS): such serum contains essential elements such as proteins, hormones, growth factors and trace minerals. The composition of FBS can be ideal for various cell growth in vitro. We supposed that we could enhance bone growth at a fractured site if FBS was mixed with synthetic scaffold-PGA. Methods: We cultured human osteoblasts in five different prepared culture dishes made with FBS and PGA mixture. The mixtures contained different ratio of FBS, that is, 0, 1.5, 3, 7, and 10%. We cultured human osteoblasts for seven days and examined the growth and attachment of the cells at the 1st, 3rd, 5th, 7th days, respectively. Results: In the mixture of 0% FBS and PGA, the growth of the cells lasted for one day. In 1.5 and 3% FBS and PGA, the growth of the cells was examined at the 3rd day, then minimally declined at the 5th and 7th days. In 7% FBS and PGA, the growth of the cells lasted for 5 days, then declined at the 7th day. In 10% FBS and PGA, the growth of the cells lasted for 5 days, then declined at the 7th day. Staining status of the osteoblasts with alkaline phosphatase showed pale pink color in 0% FBS and PGA groups, but bright pink color in 1.5, 3, 7, 10% FBS and PGA groups, especially in 3%, 7%. Conclusion: In consequence, the growth of human osteoblast was higher in the mixture of FBS and PGA groups than in pure PGA ones. It is assumed that the mixture of FBS and PGA affects the proliferation of human osteoblasts.

Design and Fabrication for the Development of the Distributed Auto Edging Machine (보급형 자동옥습기 개발을 위한 설계 및 제작)

  • Lee, Young-Il;Kim, Jung-Hee;Park, Jee-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2011
  • Purpose: To design and fabricate the distributed auto edging machine for the development. Methods: We got the necessary data needed in design by using CAD. Based on the these data, we fabricated the trial product for the development of the distributed auto edging machine. Results: The patternless mode could be operated by receiving the eyesize data from the auto lay-outer with the RS232C transmission system and the pattern mode could be operated by setting the pattern on the left side of the machine. The distributed auto edging machine were composed with combinations of many elements; head, auto arm, pattern clamp and grinding wheels. The head part controlled the grinding of ophthalmic lens by operating the vertical and horizontal motors. The wheels part was comprised of glass mode, plastic mode, V-bevel mode and polish mode. The slide in the auto arm was equipped on the below of the patten and the slide could hold up the pattern which was rotated by fixed shaft. The pattern clamp could move the head part to the up and down or right or left way by the manual operation of optometrists. Conclusions: We could succeed in making the trial product by applying it to the development of the distributed auto edging machine which could be used as the patternless mode and pattern mode, selectively. Therefore, it was confidently expected that this product was very helpful for the optometrists to dispense the ophthalmic lens because of its cost-efficiency and convenience.

Assessment of Discoidal Polymeric Nanoconstructs as a Drug Carrier (약물 운반체로서의 폴리머 디스크 나노 입자에 대한 평가)

  • BAE, J.Y.;OH, E.S.;AHN, H.J.;KEY, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Chemotherapy, radiation therapy, and surgery are major methods to treat cancer. However, current cancer treatments report severe side effects and high recurrences. Recent studies about engineering nanoparticles as a drug carrier suggest possibilities in terms of specific targeting and spatiotemporal release of drugs. While many nanoparticles demonstrate lower toxicity and better targeting results than free drugs, they still need to improve their performance dramatically in terms of targeting accuracy, immune responses, and non-specific accumulation at organs. One possible way to overcome the challenges is to make precisely controlled nanoparticles with respect to size, shape, surface properties, and mechanical stiffness. Here, we demonstrate $500{\times}200nm$ discoidal polymeric nanoconstructs (DPNs) as a drug delivery carrier. DPNs were prepared by using a top-down fabrication method that we previously reported to control shape as well as size. Moreover, DPNs have multiple payloads, poly lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), lipid-Rhodamine B dye (RhB) and Salinomycin. In this study, we demonstrated a potential of DPNs as a drug carrier to treat cancer.

Correlation between Probe Frequency and Echo-Pulse Velocity for Ultrasonic Testing of a Fiber-Reinforced Plastic Hull Plate (복합소재 선체 외판의 초음파 탐상을 위한 탐촉자 주파수와 수신기 음향 속력의 상관관계)

  • Lee, Sang-gyu;Han, Zhiqiang;Lee, Chang-woo;Oh, Daekyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.219-226
    • /
    • 2020
  • Nondestructive testing is one of the most commonly used quality inspection methods for evaluating ship structures. However, accurate evaluation is dif icult because various composite materials, such as reinforcements, resin, and fiber-reinforced plastics (FRPs), are used in hulls, and manufacturing quality differences are likely to exist owing to the fabrication environment and the skill level of workers. This possibility is especially true for FRP ships because they are significantly thicker than other structures, such as automobiles and aircraft, and are mainly manufactured using the hand lay-up method. Because the density of a material is a critical condition for ultrasonic inspection, in this study, a hull plate was selected from a vessel manufactured using e-glass fiber, which is widely used in the manufacture of FRP vessels with the weight fraction of the glass content generally considered. The most suitable ultrasonic testing conditions for the glass FRP hull plate were investigated using a pulse-echo ultrasonic gauge. A-scans were performed with three probes (1.00, 2.25, and 5.00 MHz), and the results were compared with those of the hull plate thickness measured using a Vernier caliper. It was found that when the probe frequency was higher, the eco-pulse velocity of the receiver had to be lowered to obtain accurate measurement results, whereas fewer errors occurred at a relatively low probe frequency.