• Title/Summary/Keyword: Fabrication System

Search Result 2,292, Processing Time 0.031 seconds

Electrochemical Properties and Fabrication of Conjugated System Conducting Oligomer Self-assembled Monolayer (공액구조 전도성 올리고머 자기조립단분자막의 제작 및 전기화학적 특성)

  • Min, Hyun Sik;Lee, Tae Yeon;Oh, Se Young
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.545-550
    • /
    • 2011
  • We have synthesized a high electrically conductive 4-(2-(4-(acetylthio)phenyl)ethynyl)benzoic acid (APBA) with a conjugated aromatic structure as a bio fix linker, and then fabricated APBA self-assembled monolayer (SAM) with a self-assembly technique. The structure of the prepared APBA SAM was studied and electrochemical properties of APBA SAM immobilized with a ferrocene molecule were investigated. Also, we have examined the molecular orientation and oxidation-reduction redox characteristics of the mixed SAM consisting of APBA and butanethiol (BT) with a X-ray photo electron spectroscopy (XPS) and cyclicvoltammetry, respectively. Electrochemical activity of the mixed SAM was increased with increasing the mixed time. Especially, the maximum redox current was obtained at a mixed time of 36 hrs.

Improvement in Performance of Cu2ZnSn(S,Se)4 Absorber Layer with Fine Temperature Control in Rapid Thermal Annealing System (Cu2ZnSn(S,Se)4(CZTSSe) 흡수층의 급속 열처리 공정 온도 미세 조절을 통한 특성 향상)

  • Kim, Dong Myeong;Jang, Jun Sung;Karade, Vijay Chandrakant;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.619-625
    • /
    • 2021
  • Cu2ZnSn(S,Se)4 (CZTSSe) based thin-film solar cells have attracted growing attention because of their earth-abundant and non-toxic elements. However, because of their large open-circuit voltage (Voc)-deficit, CZTSSe solar cells exhibit poor device performance compared to well-established Cu(In,Ga)(S,Se)2 (CIGS) and CdTe based solar cells. One of the main causes of this large Voc-deficit is poor absorber properties for example, high band tailing properties, defects, secondary phases, carrier recombination, etc. In particular, the fabrication of absorbers using physical methods results in poor surface morphology, such as pin-holes and voids. To overcome this problem and form large and homogeneous CZTSSe grains, CZTSSe based absorber layers are prepared by a sputtering technique with different RTA conditions. The temperature is varied from 510 ℃ to 540 ℃ during the rapid thermal annealing (RTA) process. Further, CZTSSe thin films are examined with X-ray diffraction, X-ray fluorescence, Raman spectroscopy, IPCE, Energy dispersive spectroscopy and Scanning electron microscopy techniques. The present work shows that Cu-based secondary phase formation can be suppressed in the CZTSSe absorber layer at an optimum RTA condition.

Fabrication of UV-C Emitting YPO4:Pr3+ Powder and Properties of YPO4:Pr3+-PVDF Electroluminescence Device (자외선-C 발광 YPO4:Pr3+ 분말제조 및 YPO4:Pr3+-PVDF 전계 발광소자 특성 연구)

  • Baek, GyeongDo;Afandi, Mohammad M.;Park, Jehong;Kim, Jongsu;Jeong, Yongseok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.15-18
    • /
    • 2022
  • The ultraviolet-C emitting praseodymium doped yttrium phosphate (YPO4:Pr3+) powder was synthesized by conventional solid-state reaction. The electroluminescence device was fabricated by simple screen-printing method using the synthesized YPO4:Pr3+ powder, especially, polyvinylidene fluoride as an insulating layer was applied on the printed YPO4:Pr3+ powder for stable performance of the electroluminescence. The electroluminescence properties were investigated under alternating current power system of 400 Hz. The device starts to emit at 350 V, which showed the ultraviolet-C emission peaking at the 233, 245, 264, 273 nm attributed to electronic transition of the Pr3+ ions. The electroluminescence intensity was increased as increasing the operating voltage and the device revealed stable performance up to 600 V due to the polyvinylidene fluoride serve as a protective layer.

Sensing characteristics of a non-dispersive infrared CO2 sensor using a Fabry-Perot filter based on distributed Bragg reflector (분산 반사경 기반 패브리-페로 필터를 이용한 비분산적외선 CO2 센서의 감지 특성)

  • Do, Nam Gon;Lee, Junyeop;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.446-450
    • /
    • 2021
  • Non-dispersive infrared (NDIR) gas sensors typically use an optical filter that transmits a discriminating 4.26 ㎛ wavelength band to measure carbon dioxide (CO2), as CO2 absorbs 4.26 ㎛ infrared. The filter performance depends on the transmittance and full width at half maximum (FWHM). This paper presents the fabrication, sensitivity, and selectivity characteristics of a distributed Bragg reflector (DBR)-based Fabry-Perot filter with a simple structure for CO2 detection. Each Ge and SiO2 films were prepared using the RF magnetron sputtering technique. The transmittance characteristics were measured using Fourier-transform infrared spectroscopy (FT-IR). The fabricated filter had a peak transmittance of 59.1% at 4.26 ㎛ and a FWHM of 158 nm. In addition, sensitivity and selectivity experiments were conducted by mounting the sapphire substrate and the fabricated filter on an NDIR CO2 sensor measurement system. When measuring the sensitivity, the concentration of CO2 was observed in the range of 0-10000 ppm, and the selectivity was measured for environmental gases of 1000 ppm. The fabricated filter showed lower sensitivity to CO2 but showed higher selectivity with other gases.

A review of 3D printing technology for piezoresistive strain/loadcell sensors (3D 프린팅 센서 연구 동향 소개-전왜성 변형/로드셀 센서 중심으로)

  • Cho, Jeong Hun;Moon, Raymond Hyun Woo;Kim, Sung Yong;Choi, Baek Gyu;Oh, Gwang Won;Joung, Kwan Young;Kang, In Pil
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.388-394
    • /
    • 2021
  • The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.

Design and Fabrication of an Electronic Voltage Transformer (EVT) Embedded in a Spacer of Gas Insulated Switchgears (가스절연개폐장치의 스페이서 내장형 전자식 변압기의 설계 및 제작)

  • Lim, Seung-Hyun;Kim, Nam-Hoon;Kim, Dong-Eon;Kim, Seon-Gyu;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 2022
  • Bulky iron-core potential transformers (PT) are installed in a tank of gas insulated switchgears (GIS) for a system voltage measurement in power substations. In this paper, we studied an electronic voltage transformer (EVT) embedded in a spacer for miniaturization, eco-friendliness, and performance improvement of GIS. The prototype EVT consists of a capacitive probe (CP) that can be embedded in a spacer and a voltage Follower with a high input and a low output impedance. The CP was fabricated in the form of a Flexible-PCB to acquire the insulation performance and to withstand vibration and shock during operation. Voltage ratio of the prototype EVT is about 42,270, and the frequency bandwidth of -3 dB ranges from 0.33 Hz to 3.9 MHz. The voltage ratio error evaluated at about 6%, 12% and 18% of the rated voltage of 170 kV was 0.32%, and the phase error was 12.9 minutes. These results were within the accuracy for the class 0.5 specified in IEC 60044-7 and satisfy even in ranges from 80% to 120% of the rated voltage. If the prototype EVT replaces the conventional iron-core potential transformer, it is expected that the height of the GIS could be reduced by 11% and the amount of SF6 will be reduced by at least 10%.

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

The fabrication of bulk magnet stacked with HTS tapes for the magnetic levitation

  • Park, Insung;Kim, Gwantae;Kim, Kyeongdeok;Sim, Kideok;Ha, Hongsoo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.47-51
    • /
    • 2022
  • With the innovative development of bio, pharmaceutical, and semiconductor technologies, it is essential to demand a next-generation transfer system that minimizes dust and vibrations generated during the manufacturing process. In order to develop dust-free and non-contact transfer systems, the high temperature superconductor (HTS) bulks have been applied as a magnet for levitation. However, sintered HTS bulk magnets are limited in their applications due to their relatively low critical current density (Jc) of several kA/cm2 and low mechanical properties as a ceramic material. In addition, during cooling to cryogenic temperatures repeatedly, cracks and damage may occur by thermal shock. On the other hand, the bulk magnets made by stacked HTS tapes have various advantages, such as relatively high mechanical properties by alternate stacking of the metal and ceramic layer, high magnetic levitation performance by using coated conductors with high Jc of several MA/cm2, consistent superconducting properties, miniaturization, light-weight, etc. In this study, we tried to fabricate HTS tapes stacked bulk magnets with 60 mm × 60 mm area and various numbers of HTS tape stacked layers for magnetic levitation. In order to examine the levitation forces of bulk magnets stacked with HTS tapes from 1 to 16 layers, specialized force measurement apparatus was made and adapted to measure the levitation force. By increasing the number of HTS tapes stacked layers, the levitation force of bulk magnet become larger. 16 HTS tapes stacked bulk magnets show promising levitation force of about 23.5 N, 6.538 kPa at 10 mm of levitated distance from NdFeB permanent magnet.

Preparation by the double extraction process with preliminary neutron irradiation of yttria or calcia stabilised cubic zirconium dioxide microspheres

  • Brykala, Marcin;Walczak, Rafal;Wawszczak, Danuta;Kilim, Stanislaw;Rogowski, Marcin;Strugalska-Gola, Elzbieta;Olczak, Tadeusz;Smolinski, Tomasz;Szuta, Marcin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.188-198
    • /
    • 2021
  • A modern approach to nuclear energy involves reprocessing like transmutations of spent nuclear fuel products to reduce their radiotoxicity and time needed for their storage. For this purpose, they are immobilized in inert matrices made of zirconia and can be "burned" in fast neutron reactor or Accelerator Driven System. These matrices in spherical form can be obtained by sol-gel process. The paper presents a method of microspheres fabrication based on the combined Complex Sol-Gel Process and double extraction process consisting in the preparation of zirconium-ascorbate sol and simultaneous extraction of water and nitrates. The procedure allows obtaining gel microspheres with a diameter of 50 ㎛, which after heat treatment are processed into the final product. The synthesis of zirconia microspheres with Yttrium by internal gelation process is well known for over a decade now. However, the explanation and characterization of synthesis of such material by extraction of water process is rarely found. Parameters such as: pH, viscosity, shape, sphericity and crystal structure have been determined for synthesized products and semi-products. In addition, preliminary research consisting in irradiation of the obtained materials in fast and thermal neutron flux was carried out. The obtained results are presented and described in this work.

Fabrication of Electroconductive Textiles Based Polyamide/Polyurethan Knitted Fabric Coated with PEDOT:PSS/Non-oxidized Graphene (PEDOT:PSS/그래핀 코팅된 폴리아미드/폴리우레탄 혼방 편직물 기반의 전기전도성 텍스타일 제조)

  • Luo, Yuzi;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.24 no.1
    • /
    • pp.146-155
    • /
    • 2022
  • We proposed a simple process of creating electroconductive textiles by using PEDOT:PSS(Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate))/non-oxidized graphene to coat polyamide or polyurethane knitted fabric for smart healthcare purposes. Electroconductive textiles were obtained through a coating process that used different amounts of PEDOT:PSS/non-oxidized graphene solutions on polyamide/polyurethane knitted fabric. Subsequently, the surface, electrical, chemical, weight change, and elongation properties were evaluated according to the ratio of PEDOT:PSS/non-oxidized graphene composite(1.3 wt%:1.0 wt%; 1.3 wt%:0.6 wt%; 1.3 wt%:0.3 wt%) and the number of applications(once, twice, or thrice). The specimens' surface morphology was observed by FE-SEM. Further, their chemical structures were characterized using FTIR and Raman spectroscopy. The electrical properties measurement (sheet resistance) of the specimens, which was conducted by four-point contacts, shows the increase in conductivity with non-oxidized graphene and the number of applications in the composite system. Moreover, a test of the fabrics' mechanical properties shows that PEDOT:PSS/non-oxidized graphene-treated fabrics exhibited less elongation and better ability to recover their original length than untreated samples. Furthermore, the PEDOT:PSS/non-oxidized graphene polyamide/polyurethane knitted fabric was tested by performing tensile operations 1,000 times with a tensile strength of 20%; Consequently, sensors maintained a constant resistance without noticeable damage. This indicates that PEDOT:PSS/non-oxidized graphene strain sensors have sufficient durability and conductivity to be used as smart wearable devices.