• Title/Summary/Keyword: Fabricated report

Search Result 484, Processing Time 0.021 seconds

The Evaluation of Radiation Dose to Embryo/Fetus and the Design of Shielding in the Treatment of Brain Tumors (임산부의 전뇌 방사선 치료에 있어서의 태아의 방사선량 측정 및 차폐 구조의 설계)

  • Cho, Woong;Huh, Soon-Nyung;Chie, Eui-Kyu;Ha, Sung-Whan;Park, Yang-Gyun;Park, Jong-Min;Park, Suk-Won
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.203-210
    • /
    • 2006
  • Purpose : To estimate the dose to the embryo/fetus of a pregnant patient with brain tumors, and to design an shielding device to keep the embryo/fetus dose under acceptable levels Materials and Methods : A shielding wall with the dimension of 1.55 m height, 0.9 m width, and 30 m thickness is fabricated with 4 trolleys under the wall. It is placed between a Patient and the treatment head of a linear accelerator to attenuate the leakage radiation effectively from the treatment head, and is placed 1 cm below the lower margin of the treatment field in order to minimize the dose to a patient from the treatment head. An anti-patient scattering neck supporters with 2 cm thick Cerrobend metal is designed to minimize the scattered radiation from the treatment fields, and it is divided into 2 section. They are installed around the patient neck by attach from right and left sides. A shielding bridge for anti-room scattered radiation is utilized to place 2 sheets of 3 mm lead plates above the abdomen to setup three detectors under the lead sheets. Humanoid phantom is irradiated with the same treatment parameters, and with and without shielding devices using TLD, and ionization chambers with and without a build-up cap. Results : The dose to the embryo/fetus without shielding was 3.20, 3.21, 1.44, 0.90 cGy at off-field distances of 30, 40, 50, and 60 cm. With shielding, the dose to embryo/fetus was reduced to 0.88, 0.60, 0.35, 0.25 cGy, and the ratio of the shielding effect varied from 70% to 80%. TLD results were 1.8, 1.2, 0.8, 1.2, and 0.8 cGy. The dose measured by the survey meter was 10.9 mR/h at the patient's surface of abdomen. The dose to the embryo/fetus was estimated to be about 1 cGy during the entire treatment. Conclusion : According to the AAPM Report No 50 regarding the dose limit of the embryo/fetus during the pregnancy, the dose to the embryo/fetus with little risk is less than 5 cGy. Our measurements satisfy the recommended values. Our shielding technique was proven to be acceptable.

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.

The treatment of an edentulous patient with DENTCA$^{TM}$ CAD/CAM Denture (CAD/CAM Denture를 이용한 완전 무치악 환자 수복 증례)

  • Park, Joon-Ho;Cho, In-Ho;Shin, Soo-Yeon;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • Nowadays, CAD/CAM is broadly used in dentistry for inlays, crowns, implant abutments and its spectrum is expanding to complete dentures. Utilizing CAD/CAM to fabricate complete dentures is expected to decrease chair time and the number of visits, thus decreasing total fabrication time, expenses and errors caused during fabrication processes. One of the systems using CAD/CAM, DENTCA$^{TM}$ CAD/CAM denture (DENTCA Inc. Los Angeles, USA) scans edentulous impressions, designs dentures digitally, fabricates try-in dentures by 3D printing and converts them into final dentures. Patients can wear final dentures after only 2 - 3 visits with satisfying adaptation. This case report introduces a 71-year-old male patient who visited to consult remaking of existing old dentures. Residual teeth with bad prognosis and root remnants were extracted and the patient used reformed existing mandibular denture for 2 months. And then DENTCA system started. One-step border molding was done using conventional tray of adequate size provided by DENTCA system and wash impression was taken. Gothic arch tracing was completed based on the vertical dimension of existing dentures. Both maxillary and mandibular trays were placed to the resultant centric relation and bite registration was taken. Then DENTCA scanned the bite registration, arranged the teeth, completed the festooning and fabricated the try-in dentures by 3D printing. The try-in dentures were positioned, occlusal plane and occlusal relations were evaluated. The try-in dentures were converted to final dentures. To create bilateral balanced occlusion, occlusal adjustment was done after clinical remounting using facebow transfer. The result was satisfactory and it was confirmed by patient and operator.

Case report: Application of Implant Supported Removable Partial Denture due to Multiple Dental Implant Loss of the Fixed Implant Supported Prosthesis (다수의 임플란트발거로 임플란트 고정성 보철이 실패한 환자에서의 잔존 임플란트를 이용한 부분 가철성 국소의치 수복증례)

  • Kang, Jeong Kyung;Nam, Gi Hoon
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • There are several treatment options for rehabilitation of partial edentulism including the use of conventional or implant-retained fixed prostheses. However, such prosthetic options cannot always be possible because of compromised general and oral health (i.e. loss of supporting tissues, medical reasons, extensive surgical protocol and osseointegration failure of dental implant) as well as the affordability of patients. In some cases, removable partial denture provides easier access for oral hygiene procedures and the ability to correct discrepancies in dental arch relationships than implant fixed prosthesis. Recently, Implant Supported Removable Partial Denture (ISRPD) where to place dental implant in strategic position has been suggested to improve the limitation and shortcomings of conventional RPD. ISPRD can overcome mechanical limition of conventional RPD by placing implant in a favorable position and can be cost-effective, prosthetic solution for partially edentulous patients who are not immediate candidates for extensive, fixed implant supported restorations. Incorporation of dental implants to improve the RPD support and retention and to enhance patient acceptance should be considered when treatment planning for RPD. In this case, 59 years old male patient who received dental treatment of implant fixed prosthesis on both side of the upper jaw and implant overdenture on lower jaw showed implant abutment screw fracture on #15i and osseointegration failure on multiple number of implants. After removing failed implants, we planned ISRPD using #15i,24i,25i,26i and #23 natural tooth for RPD abutment. We fabricated #23 surveyed crown,#24i=25i=26i surveyed bridge and #15i gold coping for support,retention and stability for RPD. Periodic follow up check for 2years has been performed since the ISRPD delivery to the patient. No sign of screw loosening, fracture or bone resorption around abutment implants were detected.