• Title/Summary/Keyword: Fabricated report

Search Result 484, Processing Time 0.029 seconds

Optical properties of ink color filters (잉크 색상 필터의 광학적 특성)

  • Lee, Chan-Ku;Lee, Su-Dae
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • We report a switchable RGB color filters for Lab on a chip. Ink color filter devices are fabricated by PDMS patterning process. The optical transmission in the ultra-violet and visible wavelengths of color filters have been investigated. The ink color filters are characterised by the slope and shape of the spectrum. The transmission of red/yellow filter consists of curves with a sharp cut-off spectrum at 600 and 500 nm. The blue output of the ink filter has 80% peak transmission and weak red-leak, while the green ink filter has 48% peak transmission and red-leak.

  • PDF

Enhanced Photodetection with Hot Electrons in Graphene-mediated Plasmonic Nanostructure

  • Kim, Jeong Hyeon;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.408-408
    • /
    • 2014
  • Graphene has received attention with its high electron mobility and visual transparency as a promising material for optoelectronic and photonic applications. Combination of graphene and conducting nanostructures i.e. plasmonic structures has recently been researched for enhancing light-matter interaction and overcoming diffraction limit of light. Here we show enhanced photodetection of incoherent visible light with graphene-mediated plasmonics. Gold nanoparticles fabricated by focused ion beam was used as an active element of photodetection and graphene was utilized as an interfacing material between nanostructures and electrodes. Hot electrons generated upon plasmon decay within nanoparticles pass over the potential barrier between nanostructure and graphene and give rise to a photocurrent with built-in electric field. We report 76.7% enhancement of photocurrent under resonant irradiation of fiber-coupled halogen lamp compared to the case without light illumination. We showed wavelength-dependent current response arisen from plasmonic nanostructure, providing a good agreement with theoretical calculation.

  • PDF

Pseudocapacitive Behavior of Lignin Nanocrystals Hybridized onto Reduced Graphene Oxide for Renewable Energy Storage Material

  • Kim, Yun Ki;Park, Ho Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.488.1-488.1
    • /
    • 2014
  • As the society demands the high performance energy storage devices, development of efficient and renewable energy storage materials has been a topic of interest. Here, we report pseudocapacitive behaviors of biopolymer (lignin) that was confined onto reduced graphene oxides (RGOs) for a renewable energy storage system. The strong surface confinement of quinone groups onto the electroconductive RGOs created the renewable hybrid electrodes for supercapacitors (SCs) with fast and reversible redox charge transfer. As a result, the pseudocapacitors fabricated with the hybrid electrodes of lignin and RGO presented the outstanding electrochemical performances of remarkable rate and cyclic performances:~4% capacitance drop after 3000 cycles and a maximum capacitance of 432 F g-1.

  • PDF

Controllable Growth of Single Layer MoS2 and Resistance Switching Effect in Polymer/MoS2 Structure

  • Park, Sung Jae;Chu, Dongil;Kim, Eun Kyu
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.129-132
    • /
    • 2017
  • We report a chemical vapor deposition approach and optimized growth condition to the synthesis of single layer molybdenum disulfide ($MoS_2$). Obtaining large grain size with continuous $MoS_2$ atomically thin films is highly responsible to the growth distance between molybdenum trioxide source and receiving silicon substrate. Experimental results indicate that triangular shape $MoS_2$ grain size could be enlarged up to > 80um with the precisely controlled the source-to-substrate distance under 7.5 mm. Furthermore, we demonstrate fabrication of a memory device by employing poly(methyl methacrylate) (PMMA) as insulating layer. The fabricated devices have a PMMA-$MoS_2$/metal configuration and exhibit a bistable resistance switching behavior with high/low-current ratio around $10^3$.

Periodic patterning using a femtosecond laser (펨토초 레이저를 이용한 미세 패터닝 기술)

  • Sohn Ik-Bu;Lee Man-Seop;Woo Jung-Sik;Lee Sang-Man;Chung Jeong-Yong
    • Laser Solutions
    • /
    • v.8 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • We report experimental results on the periodic patterning using a Ti:sapphire femtosecond laser (800nm, 100fs, 1kHz). Periodic structures with reproducible basic patterns are produced both on the surface and inside transparent materials. Period patterning for the application to display panel is widely investigated. Also, the submicron dot and line patterns are fabricated inside fused silica glass, which is important for the formation of diffraction grating in integrated optical circuit. finally, we demonstrate the utility of the femtosecond laser application to optical memory by fabricating the three-dimensional dot patterns.

  • PDF

Fatigue Strength Evaluation on the IB-Type Spot Welded Lap Joint of 304 Stainless Steel Part 2 : Strain energy Density (304 스테인레스 박강판 IB형 용접이음재의 피로강도 평가 Part 2 : 변형에너지 밀도에 의한 평가)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.32-37
    • /
    • 1999
  • Since stainless steel plates have good mechanical properties, weldability, appearance and resistance of corrosion, these are traditionally used for vehicles such as the bus and the train. And they are mainly fabricated by spot welding. But fatigue strength of their spot welded joint is considerably influenced by welding conditions as well as geometrical factors. Thus a reasonable and systematic criterion for long life design of spot welded body structure must be established. In this report, strain energy density was analyzed by using 3-dimensional finite element model about the IB-type spot welded lap joint under tension-shear load. Fatigue tests were conducted on them having various thickness, joint angle, lapped length and width. From their results, it was found that fatigue strength of the IB-type spot welded lap joints could be effectively and systematically rearranged by strain energy density at the edge of nugget.

  • PDF

One-step fabrication of a large area wire-grid polarizer by nanotransfer molding

  • Hwang, Jae-K.;Park, Kyung-S.;Sung, Myung-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.464-464
    • /
    • 2011
  • We report a method to fabricate a large-area metal nanowire-grid polarizer. Liquid-bridge-mediated nanotransfer molding (LB-nTM) is based on the direct transfer of metal nanowires from a mold to a transparent substrate via liquid layer. A metal particle solution is used as an ink in the LB-nTM, which can be used for the formation of metal nanowires. The nanowires have higher depth are preferred for high transmittance. The height of nanowires that we made is about 140 nm. Large-area WGP is fabricated with good average transmittance of 74.89% in our measuring range.

  • PDF

Fabrication of Organic Nanowire Electronics by Direct Printing Method

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.563-563
    • /
    • 2012
  • We report a one-step fabrication of single-crystal organic nanowire arrays on substrates using a new direct printing method (liquid-bridge-mediated nanotransfer moulding, LB-nTM), which can simultaneously enable the synthesis, alignment and patterning of the nanowires using molecular ink solutions. Two- or three-dimensional complex structures of various single-crystal organic nanowires were directly fabricated over a large area with a successive process. The position of the nanowires can be aligned easily on complex structures because the mold is movable on substrates before drying the polar liquid layer, which acts as an adhesive lubricant. This efficient manufacturing method can produce a wide range of optoelectronic devices and integrated circuits with single-crystal organic nanowires.

  • PDF

Fabrication of Beta-phase Poly(9,9-dioctylfluorene) Nanowire Arrays for Polymer Light-Emitting Diode Using Direct Printing Method

  • Baek, Jang-Mi;Lee, Gi-Seok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.560-560
    • /
    • 2012
  • We report a one-step fabrication method of Poly(9,9-dioctylfluorene) (PFO) nanowire array with pronounced ${\beta}$-Phase. We use liquid-bridge-mediated nanotransfer molding (LB-nTM) which is a new direct nano-patterning method based on the direct transfer of various materials from a mold to a substrate via liquid layer. The formation of the ${\beta}$-phase morphology in the resulting PFO nanowire array was evidenced by the presence of an absorption peak at 435nm. With the collection polarizer oriented parallel to the wire long axis, the PL emission was most intense and an emission dichroic ratio, DRE, of 3.7 was determined. The nanowire array have been investigated by scanning electron microscopy (SEM). Also, we simply fabricated structure of device of ITO/PFO nanowire arrays/Al and the electroluminescence spectra were recorded at various applied voltage.

  • PDF

Fabrication of a metal-ceramic crown to fit an existing partial removable dental prosthesis using ceramic pressed to metal technique: a clinical report

  • Seo, Jae-Min;Ahn, Seung-Geun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.241-244
    • /
    • 2014
  • Fabricating a crown to retrofit an existing abutment tooth for a partial removable dental prosthesis (PRDP) is one of the most time-consuming and labor-intensive clinical procedures. In particular, when the patient is concerned with esthetic aspects of restoration, the task of fabricating becomes more daunting. Many techniques for the fabrication of all-metallic or metal-ceramic crowns have been discussed in the literature. This article was aimed to describe a simple fabrication method in which a retrofitting crown was fabricated for a precise fit using a ceramic-pressed-to-metal system.