• Title/Summary/Keyword: Fabric Properties

Search Result 1,183, Processing Time 0.028 seconds

Dyeing and Deodorizing Properties of Cotton, Silk, and Wool Fabrics Dyed with Various Natural Colorants (여러 가지 천연 염재를 이용한 면, 견, 모직물의 염색 및 소취 특성)

  • Hwang, Eun-Kyung;Lee, Young-Hee;Kim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.19 no.6
    • /
    • pp.12-20
    • /
    • 2007
  • Four kinds of natural dying solutions (natural colorant extracts)were obtained by extraction from sappan wood, black tea, peony, and clove using water as extracting solvent at $90^{\circ}C$ for 90 min with liquor ratio (solid natural colorant material/solvent water, weight ratio) of 1/10. The dyeing, colour fastness and deodorizing properties of fabrics (cotton, silk, and wool fabrics) dyed with natural colorant extracts were compared. It was found that these properties were significantly dependent on the concentration of extracts, the structure of colorant, and the kind of fabrics. The K/S value of dyed cotton fabric increased in the order of peony < sappan wood < clove < black tea, however, the values of dyed silk and wool fabrics were in the order of peony < sappan wood < black tea < clove. Colour fastness (light, water, and perspiration fastness) was in the range of 3 - 5 grade except for sappan wood. The deodorizing performance of fabrics dyed with various natural colorants extracts was in the range of 56 - 99%. The deodorizing performance increased in the order of peony < black tea < sappan wood < clove. Especially, the deodorizing performance of all fabrics dyed with clove was found to be the highest at 98-99%.

A Study on The Physical Properties of Sheath/Core Type Nylon/PET High Hollow Composite Yarns and its Fabrics (Sheath/Core형 나일론/PET 고중공 복합사 및 직물물성 연구)

  • Kim, Seung-Jin;Park, Kyung-Soon;Jo, Jin-Hwang
    • Textile Coloration and Finishing
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2009
  • This paper surveys the physical properties of sheath/core nylon/PET high hollow composites filaments and its fabrics according to the various elution conditions such as concentration of elution, eluted time and eluted temperature. For this purpose, sheath/core nylon/PET filament was texturized and four kinds of fabric specimens were woven with different warp and weft densities. These grey fabrics were eluted with two kinds of concentrations of NaOH (30g/l, 40g/l), three kinds of eluted temperatures $50^{\circ}C,\;60^{\circ}C,\;85^{\circ}C$) and two kinds of eluted times (60min, l20min). The elution characteristics of these specimens were investigated and discussed with different elution conditions. In addition, the mechanical properties such as extensibility, bending rigidity, shear modulus and compressional work of these specimens aceording to the elution conditions were analysed and summarized with cross-sectional shapes of eluted filaments measured by SEM.

Effect of UV Irradiation on the Color and Mechanical Properties of Catechu Dyed Fabrics (자외선 조사가 아선약 염색 직물의 색상 및 역학적 특성에 미치는 영향)

  • Nam, Ki-Yeon;Lee, Jung-Soon
    • Korean Journal of Human Ecology
    • /
    • v.20 no.5
    • /
    • pp.1009-1023
    • /
    • 2011
  • This study was carried out to investigate the variations of catechu dyed fabrics under UV irradiation. Catechu dyed cotton and silk fabrics mordanted with Fe and Cu were irradiated with UV under dry and wet conditions, and then were evaluated on color changes and mechanical properties. Owing to UV irradiation, the K/S values of catechu dyed cotton fabrics increased until a certain amount of time but those of catechu-dyed silk fabrics increased continuously. Cu mordanting cotton fabrics showed the smallest changes due to the UV treatment, and silk fabrics mordanted with Fe showed the largest changes. Wetted fabrics were accelerated maillard browning by UV. Un-mordanted cotton fabrics treated with UV under dry conditions changed its YR color to Y, but changed its Y color to YR under wet conditions. However, mordanted cotton fabrics treated with UV didn't change their color. Dyed silk fabrics except those Fe mordanted and in wet conditions continued to keep their color after UV irradiation. Silk fabric mordanted with Fe under wet conditions changed its Y color to YR by UV irradiation. UV irradiation didn't affect the mechanical properties of catechu-dyed cotton and silk fabrics in any significant way.

Fabrication and Performance Evaluation of Carbon Fiber/Graphene Nano-Platelets Composites for Wear Resistance Application (GNP 첨가 탄소복합재료의 제조 및 마모 특성 평가)

  • Park, Seung-Bhin;Park, Jin-Chul;Cho, Chang-Woo;Song, Jung-Il
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.531-536
    • /
    • 2015
  • GNPs have several excellent mechanical properties including high strength, a good young's modulus, thermal conductivity, corrosion resistance, electronic shielding, etc. In this study, CF/GNP/Epoxy composites were manufactured using GNP weight ratios of 0.15 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt% and 1 wt%. The composites were manufactured with a mechanical method (3-roll-mill). Tensile, impact and wear tests were performed according to ASTM standards D3039, D256 and D3181, respectively. The results show that the CF/GNP0.3wt%/Epoxy composites have good mechanical properties, e.g., tensile strength and impact and wear resistance. In this study, both carbon fabric and GNPs were used as reinforcements in the composites. The mechanical properties increased and weight loss decreased as the GNP content in the resin films was increased.

Effects of Hot Pressing Condition on the Properties of SiCf/SiC Composites (SiCf/SiC 복합체의 특성에 미치는 열간가압소결 조건의 영향)

  • Noviyanto, Alfian;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.335-341
    • /
    • 2011
  • Continuous SiC fiber-reinforced SiC-matrix composites ($SiC_f$/SiC) had been fabricated by electrophoretic infiltration combined with ultrasonication. Nano-sized ${\beta}$-SiC added with 12 wt% of $Al_2O_3-Y_2O_3$ additive and Tyranno$^{TM}$-SA3 fabric were used as a matrix phase and fiber reinforcement, respectively. After hot pressing at 5 different conditions, the density, microstructure and mechanical properties of $SiC_f$/SiC were characterized. Hot pressing at relatively severe conditions, such as $1750^{\circ}C$ for 1 and 2 h, resulted in a brittle fracture behavior due to the strong fiber-matrix interface in spite of their high flexural strength. On the other hand, toughened $SiC_f$/SiC composite could be achieved by hot pressing at milder condition because of the formation of weak interface in spite of the decreased flexural strength. These results proposed the importance of weak fiber-matrix interface in the fabrication of ductile $SiC_f$/SiC composite.

Effect of Knit Structure on the Hand Properties of Weft Knitted Fabrics -Focusing on Objective Hand Evaluation- (편성조직이 위편성물의 태에 미치는 영향 -싱글니트의 객관적 태평가를 중심으로-)

  • 조혜진;이원자;김영주;서정권
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.8
    • /
    • pp.1153-1164
    • /
    • 2004
  • The purpose of this study was to knitted nine kinds of single knit and examined mechanical properties and hand to provide the fact that knit, tuck and miss stitch applied to various structure have an effect on hand of weft knitted fabrics. It was good to use tuck stitch rather than miss stitch to increase elasticity of knitted fabrics. As tuck stitch and miss stitch were double or triple overlaps, tensile resilence(RT) decreased by increase of friction contacted among stitch. As cross tuck stitch and cross miss stitch were knitted double or triple, bending rigidity(B), hysteresis of bending moment(2HB) and shearing(G) properties increased by jamming of stitch. As tuck stitch and miss stitch were overlap, thickness increased and they became thicker than miss stitch. Also, as they became thicker by these tuck stitch and miss stitch, compressional energy(WC) increased. It appeared that coefficient of friction(MIU) of cross tuck stitch was larger than coefficient of cross miss stitch. Mean deviation of surface roughness(SMD) had a tendency to be larger as tuck stitch and miss stitch increased. As cross tuck stitch and cross miss stitch were overlaps double or triple, KOSHI and FUKURAMI increased, total hand value(TIV) and NUMERI appeared high in double cross tuck stitch and double cross miss stitch.

Preparation and Physical Properties of Silicone Softner for PP Finish (PP 가공용 실리콘 유연제의 제조와 물성연구)

  • Im, Wan-Bin;Yang, In-Mo;Jung, Choong-Ho;Hahm, Hyun-Sik;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.117-122
    • /
    • 2002
  • A silicone softner (SS-5), a permanent press (PP) finish, was prepared by blending silicone oil KF-96 (as a lubricating component) and beef tallow hardened oil (as a softening component) which was synthesized from fatty polyamide salts. The prepared SS-5 and the PP finishing resin were applied to PP finishing cotton cloth and P/C gingham sample by one-bath method. The properties such as crease recovery, tear strength, and bending resistance were tested. The samples treated with SS-5 and PP finishing resin showed improved properties when comparing with the untreated ones, with the ones treated only with PP finishing resin, with ones treated with commercial PP finishing softners and PP finishing resin. The grades of fabric samples treated with 3% SS-5 were fifth grade in the bending resistance test.

Experimental tensile test and micro-mechanic investigation on carbon nanotube reinforced carbon fiber composite beams

  • Emrah Madenci;Yasin Onuralp Ozkilic;Ahmad Hakamy;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.443-450
    • /
    • 2023
  • Carbon nanotubes (CNTs) have received increased interest in reinforcing research for polymer matrix composites due to their exceptional mechanical characteristics. Its high surface area/volume ratio and aspect ratio enable polymer-based composites to make the most of its features. This study focuses on the experimental tensile testing and fabrication of carbon nanotube reinforced composite (CNTRC) beams, exploring various micromechanical models. By examining the performance of these models alongside experimental results, the research aims to better understand and optimize the mechanical properties of CNTRC materials. Tensile properties of neat epoxy and 0.3%; 0.4% and 0.5% by CNT reinforced laminated single layer (0°/90°) carbon fiber composite beams were investigated. The composite plates were produced in accordance with ASTM D7264 standard. The tensile test was performed in order to see the mechanical properties of the composite beams. The results showed that the optimum amount of CNT was 0.3% based on the tensile capacity. The capacity was significantly reduced when 0.4% CNT was utilized. Moreover, the experimental results are compared with Finite Element Models using ABAQUS. Hashin Failure Criteria was utilized to predict the tensile capacity. Good conformance was observed between experimental and numerical models. More importantly is that Young' Moduli of the specimens is compared with the prediction Halpin-Tsai and Mixture-Rule. Although Halpin-Tsai can accurately predict the Young's Moduli of the specimens, the accuracy of Mixture-Rule was significantly low.

CNT-Ni-Fabric Flexible Substrate with High Mechanical and Electrical Properties for Next-generation Wearable Devices (차세대 웨어러블 디바이스를 위한 높은 기계적/전기적 특성을 갖는 CNT-Ni-Fabric 유연기판)

  • Kim, Hyung Gu;Rho, Ho Kyun;Cha, Anna;Lee, Min Jung;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.39-44
    • /
    • 2020
  • Recently, numerous researches are being conducted in flexible substrate to apply to wearable devices. Particularly, Conductive substrate researches that can implement the wearable devices on clothing are massive. In this study, we formed fiber substrate spraying CNT and Pd mixed solution on it and plated metal layer with electroless plating. Used SEM equipment and EDS analysis to analysis structure of the plated fiber substrate and discovered Ni layer was created. For check electrical properties, mapping was performed to check surface resistance and distribution of resistance of electroless plated fiber substrate with 4-point probe. It was confirmed that conductivity was improved as the duration of electroless plating was increased, and it was found that distribution of resistance by surface location was uniform. Changes in resistance due to mechanical stress were measured through tensile, bending, and twisting tests. As a result, it was confirmed that resistance change of flexible substrate gradually disappeared as plating time increased. Using UTM (Universal testing machine), it was analyzed mechanical properties of the electroless plated substrate with respect to changes in plating time were improved. In the case of conductive fiber substrate in which electroless plating was performed for 2 hours, tensile strength was increased by 16 MPa than fiber substrate. Based on these results, we found that Ni-CNT-Fabric flexible substrate is adequate for clothing-intergrated conductive substrate and we positively expect that this experiment shows flexible substrate can adapt to and develop not only a wearable device technology but also other fields needing flexibility such as battery, catalyst and solar cell.

Evaluation of Tailorability and Mechanical Properties of Stretch Fabrics (스트레치 직물의 역학적 특성 및 봉제성능 평가)

  • Lee, Hwan-Deok;Sung, Su-Kwang;Kwon, Hyun-Sun
    • Fashion & Textile Research Journal
    • /
    • v.2 no.2
    • /
    • pp.150-158
    • /
    • 2000
  • This study investigated mechanical properties, drape coefficients and node indices of stretch fabrics. We applied mechanical properties to exhibited tailorability control in HESC and evaluated making-up. The mechanical properties such as tensile, bending, shearing, compression, surface characteristic values, thickness and weight were measured by the KES-F system and drape coefficient by drape tester. The summarized results of this study were as follows; First, stretch fabrics, almost, shown high stretch in weft inserted polyurethane yarn fabric and had a ${\pm}2{\sigma}$(sigma) range of shearing, compression, surface and thickness, except bending and weight, as compared with Japanese women's thin dress fabrics. Second, bending had a positive correlation in stiffness, anti-drape and flexibility & softness. Shearing had a negative correlation in crispness and scroop. Surface properties had a high contribution in fullness & softness. Third, The drape coefficient was found by measuring the mechanical properties according to the obtained regression equation. Forth, many problems are expected in overfeed and cutting operations in sewing process. In the decision of the good external appearance using TVA, only 26 of 55 samples are included in the range of the good external appearance. Fifth, in the regard of the result for sewing control, warp values are not necessary to control in the all kind of items. But weft value in the RT and EM are out of non-control zone. So we need a special management during sewing process.

  • PDF