• Title/Summary/Keyword: Fabric Properties

Search Result 1,183, Processing Time 0.03 seconds

Tailoring fabric geometry of plain-woven composites for simultaneously enhancing stiffness and thermal properties

  • Zhou, Xiao-Yi;Wang, Neng-Wei;Xiong, Wen;Ruan, Xin;Zhang, Shao-Jin
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.489-499
    • /
    • 2022
  • This paper proposes a numerical optimization method to design the mesoscale architecture of textile composite for simultaneously enhancing mechanical and thermal properties, which compete with each other making it difficult to design intuitively. The base cell of the periodic warp and fill yarn system is served as the design space, and optimal fibre yarn geometries are found by solving the optimization problem through the proposed method. With the help of homogenization method, analytical formulae for the effective material properties as functions of the geometry parameters of plain-woven textile composites were derived, and they are used to form the inverse homogenization method to establish the design problem. These modules are then put together to form a multiobjective optimization problem, which is formulated in such a way that the optimal design depends on the weight factors predetermined by the user based on the stiffness and thermal terms in the objective function. Numerical examples illustrate that the developed method can achieve reasonable designs in terms of fibre yarn paths and geometries.

Color Sensibility Factors for Yellowish and Reddish Natural Dyed Fabrics by 40s Middle-Aged Consumers (황색과 적색계열 천연염색 직물에 대한 사십대 중년층 소비자의 색채감성요인)

  • Yi, Eun-Jou;Choi, Jong-Myoung
    • Science of Emotion and Sensibility
    • /
    • v.12 no.1
    • /
    • pp.109-120
    • /
    • 2009
  • This study was carried out in order to investigate color sensation and sensibility for yellowish natural dye fabrics and reddish ones and to establish prediction models for color sensibility factors of them by color sensation and the related physical measurements focusing on 40s middle-aged people. Eight fabric stimuli which were dyed with a variety of yellowish or reddish natural dyes was subjectively evaluated in terms of color sensation and sensibility by 40s aged participants. As results, three color sensibility factors including 'Active', 'Characteristic', and 'Relax' were extracted and they were examined in respect of their relationships with color sensation and physical color properties. Color sensibility factor 'Active', the dominant factor for the naturally dyed fabrics was explained by $L^*$ and sensation 'Deep' in its predictive model and a yellowish fabric dyed with 300% solution of armur cork unmordanted was perceived the strongest in the factor. Factor 'Characteristic' was predicted by both $a^*$ and sensation 'Light' and reddish natural dye fabrics tended to be felt more strongly for it. Color sensation 'Strong' was the only predictor for factor 'Relax' in that naturally dyed fabrics with lower values for the sensation seemed to show higher 'Relax' factor and a reddish fabric dyed with safflower 125% was the highest for the color sensibility factor. These results could be utilized to design color-sensible natural dye fabrics for middle-aged people.

  • PDF

Carbon-nanotube-based Spacer Fabric Pressure Sensors for Biological Signal Monitoring and the Evaluation of Sensing Capabilities (생체신호 모니터링을 위한 CNT 기반 스페이서 직물 압력센서 구현 및 센싱 능력 평가)

  • Yun, Ha-yeong;Kim, Sang-Un;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.65-74
    • /
    • 2021
  • With recent innovations in the ICT industry, the demand for wearable sensing devices to recognize and respond to biological signals has increased. In this study, a three-dimensional (3D) spacer fabric was embedded in a single-wall carbon nanotube (SWCNT) dispersive solution through a simple penetration process to develop a monolayer piezoresistive pressure sensor. To induce electrical conductivity in the 3D spacer fabric, samples were immersed in the SWCNT dispersive solution and dried. To determine the electrical properties of the impregnated specimen, a universal testing machine and multimeter were used to measure the resistance of the pressure change. Moreover, to examine the changes in the electrical properties of the sensor, its performance was evaluated by varying the concentration, number of penetrations, and thickness of the specimen. Samples that penetrated twice in the SWCNT distributed solution of 0.1 wt% showed the best performance as sensors. The 7-mm thick sensors showed the highest GF, and the 13-mm thick sensors showed the widest operating range. This study confirms the effectiveness of the simple process of fabricating smart textile sensors comprising 3D spacer fabrics and the excellent performance of the sensors.

Comparison of physical materials using the 3D Clothing Simulation Z-weave program and its feasibility in the sustainable fashion industry (3D 의류 시뮬레이션 Z-weave 프로그램을 이용한 실물 소재 비교와 지속 가능한 패션 산업에서의 실현성)

  • Heeju Chae;Doeun Kim;Yoonji Shin
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.80-89
    • /
    • 2024
  • This study aims not only to address environmental issues caused by indiscriminate fashion consumption, specifically in the context of Fast Fashion but also to find an alternative and a sustainable solution that is 'Upcycling' using the 3D clothing simulation program Z-weave. Upcycling products have limitations in that it is difficult to produce samples since finished products must be produced directly with limited materials and resources like waste clothes. To overcome these limitations, a 3D clothing simulation program is introduced to effectively utilize the limited resources of waste clothing. The purpose of this study is to confirm the similarity between a virtual fabric created through Z-weave and a real fabric, through this, to evaluate the possibility of application in the actual fashion industry. As a research method, surveys and interviews were conducted with related majors on virtual clothing created as similar as possible to actual clothing by adjusting the physical properties within the Z-weave program. This study attempted to describe the impact of digital technology on the fashion industry and how 3D clothing simulation programs can be used in sustainable fashion production.

A Study on the Crease Recovery Behavior of Core-spun Yarn Woven Fabrics (코어방적사직물의 구김회복거동에 관한 연구)

  • Kwon Ok-Kyung;Sung Su-Kwang;Kim Hyo-Dae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.3 s.31
    • /
    • pp.259-267
    • /
    • 1989
  • In this paper, the fabric specimen undergoes repeated laundering under given condition. After this cyclic laundering was applied, the crease recoveries of the specimen were measured using shirley crease revovery tester in order to evaluate the effect of factors at given condition during crease deformation. 5 samples of grey plain cloth were desized, alkali-scoured, bleached, whased with water, and air-dried. All tests were made on samples preconditioned to $65\%\;RH\;and\;20^{\circ}C$. The experimental results were analysed statistically to relate crease recoveries and the properties of smaples, recovery periods (time) of crease. Furthermore, the crease recoveries of core-spun yarn woven fabrics were discussed in comparison with those values for $100\%$ combed cotton yarn woven fabric and $65\%$ polyester $35\%$ carded cotton blended yarn woven fabric. The results obtained are as follows; 1. Regardless of materials, remarkable decrease are observed in crease recoveries about 1-5 cycles of the repeated laundering, but slack decrease are observed in crease recoveries after 5 cycle of the re-peated laundering. 2. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to recovery periods (t) of crease as follows; log$\alpha$=0.01415 log t+2.1168 ($r^2=0.94$) 3. Core-spun yarn woven fabrics were superior to $100\%$ combed cotton yarn woven fabrics and $65\%$ polyester $35\%$ carded cotton blended yarn woven fabric in crease recoveries. 4. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to cover factor (CF), thickness (T) at pressure 0.5 $gf/cm^2$, weight (W) as follows; log$\alpha$=-0.3482 log CF-0.4924 log T-0.4727 W+2.4243 ($r^2=0.88$) 5. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to 2HB/B, 2HB/W, $\sqrt[3]{B/W}$, WC/T which are concerning to formation of weared clothes and bending Iran formation behavior as follows: log $\alpha$=0.0091 2HB/B+0.4667 2HB/W+0.0185 $\sqrt[3]{B/W}$+0.0114 WC/T+1.8433 ($r^2=0.86$)

  • PDF

Oil Absorptive Properties of Polypropylene Knit Fabric Treated with Oleophilic Acrylic Resin (친유성 아크릴 수지로 처리된 폴리프로필렌 편직물의 유흡착 성질)

  • Jeong, Hwa-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.528-535
    • /
    • 2016
  • Two types of oleophilic acrylic prepolymers were prepared by the solution copolymerization of either ethyl acrylate (EA) or lauryl acrylate (LA) with hydroxy ethyl acrylate (HEA). For the formation of oil-absorbent materials, a mixed solution of the prepolymer and hexamethylene diisocyanate (HDI) as a cross-linker in toluene was applied to polypropylene knit velvet fabric through the conventional pad-dry-cure procedure. The gel fraction of the crosslinked resin, EA-HEA-HDI, increased with increasing feed ratio of HEA to total acrylate or HDI concentration. The oil absorbancy and retention ratio of the prepared materials were compared according to the add-on ratio of resin to fabric, and were assessed with n-decane, toluene, soybean oil, lubricant and bunker C oil as test oils. The optimal oil absorbancy of the materials were observed at around 6% of the add-on ratio for all these oils except for soybean oil. On the other hand, the oil retention ratio increased as the add-on ratio increased. Futhermore, heavier and more viscous oil generally showed higher oil retention ratios. In addition, the oil absorbancy of the materials treated with LA-HEA-HDI resin was higher than that treated with EA-HEA-HDI resin, which showed that the acrylic resins are more absorptive with increasing length of their side alkyl chain.

A Study on the Effents of High Temperature Heat Treatment on the Physical and Mechanical Properities of Carbon Fiber and Carbon Composites (탄소섬유 및 탄소복합재의 물리적/기계적 특성에 대한 고온열처리의 영향 연구)

  • Kim, Dong-Gyu;Ha, Heon-Seung;Park, In-Seo;Im, Yeon-Su;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.287-294
    • /
    • 1994
  • PAN-based carbon fiber roving and fabric were heat treated at the temperature of $2170^{\circ}C$. Using non-heat treated and heat treated fabric, greenbodies of CFRP and GFRP were manufactured in the Autoclave. After the analysis of heat treated and non-heat treated carbon fiber roving and two types of greenbodies, the variations of physical and mechanical properties of carbon fibers and greenbodies with heat treatment were studied. Observing the cross-section of carbon fiber with SEM, we knew the diameter of carbon fiber was decreased from 6.8gm to 6.4p1. The results of TGA showed that the oxidation resistence was enhanced after heat treatment. The tensile strength of carbon fiber was decreased from (3.11$\pm 0.32)\times 10^3$ MPa to (1.87$\pm 0.26)\times 10^3$MPa, but tensile modulus was increased from (1.94$\pm 0.06)\times 10^5$ MPa to (2.02$\pm 0.11)\times 10^5$MPa after heat treatment. The interlaminar shear strengths of CFRP and GFRP were 148.8$\pm$1.6Mpa and 82.2$\pm$1.1Mpa, respectively. Torch test showed that CFRP was abraded smoothly but GFRP was delaminated.

  • PDF

Evaluating the Application of Natural Pesticides on Textile Materials of Organic Cultural Heritages (섬유 재질에 대한 천연 살충·살균제의 적용성 평가)

  • Kim, Young-Hee;Hong, Jin-Young;Jung, Mi-Hwa;Jo, Chang-Wook;Kim, Soo-Ji;Lee, Jeung-Min;Choi, Jung-Eun
    • 보존과학연구
    • /
    • s.32
    • /
    • pp.25-35
    • /
    • 2011
  • Wood vinegar and Asarum sieboldii Miquel were selected as candidate materials showed antimicrobial activity and insect repellent activity. These natural pesticides have its own color and these could cause color difference on fabric materials. In the present study, we investigated the color difference of undyed and dyed fabrics to evaluate negative effect of wood vinegar and A. sieboldii Miquel. Undyed and dyed fabrics were exposed to natural pesticides of various concentrations for six months in relative humidity 70% and temperature $28^{\circ}C$. After exposure of pesticides, color difference (${\Delta}E*$) were investigated at two weeks intervals for six months. As a results, dyed cotton, silk and undyed silk fabrics exposed wood vinegar were not nearly changed in their colors, but color of only undyed cotton fabric was clearly changed by wood vinegar. Especially color difference by wood vinegar on undyed cotton fabric was most distinct as the concentration increased. On the other hand, all of fabrics exposed A. sieboldii Miquel were not nearly changed in their colors for six months. Therefore, this study first suggests that wood vinegar and A. sieboldii Miquel as natural insecticides could be used to conserve for textile cultural properties from insects and microorganism, but wood vinegar couldn't use the high concentration on undyed cotton fabric.

  • PDF

Objective Sensibility Evaluation of the Acrylic Knitted Fabrics from Various Blended and Twisted Yarns (혼방 및 연사방법에 따른 아크릴 니트소재의 객관적 감성평가)

  • Kim, Mi-Jin;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.8 no.3
    • /
    • pp.17-25
    • /
    • 2006
  • We performed the objective sensibility evaluation on knitted fabrics by the following procedures: setting acrylic fabrics with knitted fabrics as basis, knitted five kinds of blended spun yarns and four kinds of twisted filament yams made by different twisting methods(the amount and direction of twist) then, measuring mechanical properties in the use Kawabata Evaluation System, obtaining hand values and total hand values. The results are as follows: First, A(F)/W acrylic/wool spun knits obtain high scores in bending, compressing, shear properties, MMD, and thickness among five kinds of acrylic-blended knit fabrics. A(S)/W acrylic/wool blended knit represented prominent values at compressing properties and thickness and so wool-blended yams demonstrated superior characters comparing other blended yarns. To contrast, acrylic/rayon blended knits showed low scores in bending properties, shear properties and thickness, so that it affects to total hand values. On the one hand, among the four kinds of acrylic filament knitted fabrics, they do not exhibit any notable dynamic differences such as tensile properties of knitted fabrics by the twist number and direction of filament yarns, bending, shear, compressing properties, weight and thickness except surface properties. Second, fabrics showed the most high score at FUKURAMI (fullness and softness) among the hand values. A(S)/W acrylic/wool blended knits obtaining the lowest values at SAHRI (crispness) outrank at total hand values, so that it was the predominant knitted fabric in objective sensibility evaluation. In total hand values, five kinds of acrylic blended knits got a higher score than four kinds of acrylic filament knits, and the amount and direction of twist did not influence on total hand values among the four kinds of acrylic filaments.

  • PDF

The Effect of Pile Length on the Handle and Physical Properties of Velvet (Velvet의 pile 길이가 촉감 및 물리적 특성에 미치는 영향)

  • 장정애;류덕환
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.3
    • /
    • pp.471-482
    • /
    • 1995
  • Using the acetate velvet and viscose velvet whose pile lengths were sheared as 1.45, 1.55, 1 65, 1.75, 1.85, 1.90mm under the condition equating the weaving process of ground fabric, the conclusions were as follows through the results of the sensory assessments estimated by women students in our university and the physical properties, H. V and T. H. V obtained by KES-F system. 1. In the sensory assessments estimated by the method of paired comparison and ranking of samples, the longer pile length was, the more the hand values of smoothness, softness, thickness, heaviness increased on the whole. 2. The H V. and T. H. V. measured by KES-F system were as follows; Kohi increased to pile length 1.85mm and then decreased a little at 1.90mm. hummer increased as pile length was longer. Fukurami increased to pile length 1.75mm and then decreased gradually as pile length was longer. Total hand value increased gradually from 1. 45mm to 1.85mm, had the top value at 1.85mm, and then decreased a little at 1.90mm. 3. In the results of summarizing $\ulcorner$the physical properties correlated closely with the H. V obtained by sensory assessments$\lrcorner$ and tithe Physical properties correlated closely with the H. V. and T. H. V obtained by KES-F systems, it showed that all the sensory properties correlated closely with compressive energy, flexural rigidity, thickness, weight and pile ratio in the former and that the physical properties correlated closely with each H V and T. H. V were different in the latter. 4. It showed that factor 1 was related to compressive energy, thickness, weight, pile ratio, factor 2 was related to recovery energy, compressive resilience, compressive index, and factor 3 was related to compressive recovery ratio in the result of factor analysis. 5. In the multiple repression analysis, the expressions of all sensory properties had compressive ratio, frictional coefficient in the regression expressions of $\ulcorner$H. V. obtained by sensory assessments$\lrcorner$, while the expressions of each H. V. and different physical properties in the regression expressions of $\ulcorner$H. V. obtained by KES-F system$\lrcorner$.

  • PDF