DOI QR코드

DOI QR Code

Tailoring fabric geometry of plain-woven composites for simultaneously enhancing stiffness and thermal properties

  • Received : 2020.10.28
  • Accepted : 2021.05.21
  • Published : 2022.02.25

Abstract

This paper proposes a numerical optimization method to design the mesoscale architecture of textile composite for simultaneously enhancing mechanical and thermal properties, which compete with each other making it difficult to design intuitively. The base cell of the periodic warp and fill yarn system is served as the design space, and optimal fibre yarn geometries are found by solving the optimization problem through the proposed method. With the help of homogenization method, analytical formulae for the effective material properties as functions of the geometry parameters of plain-woven textile composites were derived, and they are used to form the inverse homogenization method to establish the design problem. These modules are then put together to form a multiobjective optimization problem, which is formulated in such a way that the optimal design depends on the weight factors predetermined by the user based on the stiffness and thermal terms in the objective function. Numerical examples illustrate that the developed method can achieve reasonable designs in terms of fibre yarn paths and geometries.

Keywords

Acknowledgement

This work was supported by Fundament Research Funds for the Central Universities [Grant No. 2242020R10037] and Basic Research Program of Jiangsu Province [Grant No. BK20211174].

References

  1. Abu Bakar, I.A., Kramer, O., Bordas, S. and Rabczuk, T. (2013), "Optimization of elastic properties and weaving patterns of woven composites", Compos, Struct., 100, 575-591. http://dx.doi.org/10.1016/j.compstruct.2012.12.043.
  2. Ai, L. and Gao, X.L. (2017), "Metamaterials with negative Poisson's ratio and non-positive thermal expansion", Compos. Struct., 162, 70-84. https://doi.org/10.1016/j.compstruct.2016.11.056.
  3. Axinte, A., Taranu, N., Bejan, L. and Hudisteanu, I. (2017), "Optimisation of fabric reinforced polymer composites using a variant of genetic algorithm", 24(6), 1479-1491. Appl. Compos. Mater., http://dx.doi.org/10.1007/s10443-017-9594-8.
  4. Barbero, E.J., Damiani, T.M. and Trovillion, J. (2005), "Micromechanics of fabric reinforced composites with periodic microstructure", Int, J. Solids Struct., 42(9-10), 2489-2504. http://dx.doi.org/10.1016/j.ijsolstr.2004.09.034.
  5. Bard, S., Schonl, F., Demleitner, M. and Altstadt, V. (2019), "Influence of fiber volume content on thermal conductivity in transverse and fiber direction of carbon fiber-reinforced epoxy laminates", Materials, 12(7), 1084. http://dx.doi.org/10.3390/ma12071084.
  6. Cadman, J.E., Zhou, S., Chen, Y. and Li, Q. (2013), "On design of multi-functional microstructural materials", J. Mater. Sci., 48(1), 51-66. http://dx.doi.org/10.1007/s10853-012-6643-4.
  7. Challis, V.J., Roberts, A.P. and Wilkins, A.H. (2008), "Design of three dimensional isotropic microstructures for maximized stiffness and conductivity", Int. J. Solids Struct., 45(14-15), 4130-4146. http://dx.doi.org/10.1016/j.ijsolstr.2008.02.025.
  8. Cherif, Z.E., Poilane, C., Vivet, A., Ben Doudou, B. and Chen, J. (2016), "About optimal architecture of plant fibre textile composite for mechanical and sorption properties", Compos. Struct., 140, 240-251. http://dx.doi.org/10.1016/j.compstruct.2015.12.030.
  9. Correia, J.A.R., Bai, Y. and Keller, T. (2015), "A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications", Compos. Struct., 127, 267-287. https://doi.org/10.1016/j.compstruct.2015.03.006.
  10. Crookston, J.J., Long, A.C. and Jones, I.A. (2005), "A summary review of mechanical properties prediction methods for textile reinforced polymer composites", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 219(2), 91-109. https://doi.org/10.1243/146442005X10319.
  11. de Kruijf, N., Zhou, S., Li, Q. and Mai, Y.W. (2007), "Topological design of structures and composite materials with multiobjectives", Int. J. Solids Struct., 44(22), 7092-7109. http://dx.doi.org/10.1016/j.ijsolstr.2007.03.028.
  12. Drach, B., Kuksenko, D. and Sevostianov, I. (2016), "Effect of a curved fiber on the overall material stiffness", Int. J. Solids Struct., 100-101, 211-222, https://doi.org/10.1016/j.ijsolstr.2016.08.018.
  13. Esmaeeli, M., Nami, M.R. and Kazemianfar, B. (2019), "Geometric analysis and constrained optimization of woven z-pinned composites for maximization of elastic properties", Compos. Struct., 210, 553-566. https://doi.org/10.1016/j.compstruct.2018.11.070.
  14. Ghiasi, H., Fayazbakhsh, K., Pasini, D. and Lessard, L. (2010), "Optimum stacking sequence design of composite materials Part II: Variable stiffness design", Compos. Struct., 93(1), 1-13. Int. J. Heat Mass Transfer, 179, 121673. https://doi.org/10.1016/j.compstruct.2010.06.001.
  15. Liu, X., Rouf, K., Peng, B. and Yu, W. (2017), "Two-step homogenization of textile composites using mechanics of structure genome", Compos. Struct., 171, 252-262. https://doi.org/10.1016/j.compstruct.2017.03.029.
  16. Liu, Y., Qu, Z.G., Guo, J. and Zhao, X.M. (2019), "Numerical study on effective thermal conductivities of plain woven C/SiC composites with considering pores in interlaced woven yarns", Int. J. Heat Mass Transfer, 140, 410-419. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.007.
  17. Liu, Z., Guo, T., Han, D. and Li, A. (2020), "Experimental study on corrosion-fretting fatigue behavior of bridge cable wires", J. Bridge Eng., 25(12), 04020104. https://doi.org/10.1111/ffe.13331.
  18. Liu, Z., Guo, T., Yu, X., Huang, X. and Correia, J. (2021c), "Corrosion fatigue and electrochemical behaviour of steel wires used in bridge cables", Fatigue Fracture Eng. Mater. Struct., 44(1), 63-73. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001642.
  19. Matusiak, M. and Sikorski, K. (2011), "Influence of the structure of woven fabrics on their thermal insulation properties", Fibres Textiles Eastern Europe, 19(5), 46-53. http://www.fibtex.lodz.pl/article575.html.
  20. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21(5), 571-574. http://dx.doi.org/10.1016/0001-6160(73)90064-3.
  21. Rouf, K., Denton, N.L. and French, R.M. (2017), "Effect of fabric weaves on the dynamic response of two-dimensional woven fabric composites", J. Mater. Sci., 52(17), 10581-10591. https://doi.org/10.1007/s10853-017-1183-6.
  22. Scida, D., Aboura, Z., Benzeggagh, M.L. and Bocherens, E. (1999), "A micromechanics model for 3D elasticity and failure of woven-fibre composite materials", Compos. Sci. Technol., 59(4), 505-517. http://dx.doi.org/10.1016/S0266-3538(98)00096-7.
  23. Skocek, J., Zeman, J. and Sejnoha, M. (2008), "Effective properties of textile composites: application of the Mori-Tanaka method", Modelling Simulation Mater. Sci. Eng., 16(8), 085002. http://dx.doi.org/10.1088/0965-0393/16/8/085002.
  24. Vaidyanathan, R. and Gowayed, Y.A. (1996), "Optimization of elastic properties in the design of textile composites", Polymer Compos., 17(2), 305-311. http://dx.doi.org/10.1002/pc.10615.
  25. Vorel, J. and Sejnoha, M. (2009), "Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method", Struct. Eng. Mech., 33(4), 429-446. https://doi.org/10.12989/sem.2009.33.4.429.
  26. Wang, Z., Bai, J., Sobey, A., Xiong, J. and Shenoi, A. (2018), "Optimal design of triaxial weave fabric composites under tension", Compos. Struct., 201, 616-624. https://doi.org/10.1016/j.compstruct.2018.06.090.
  27. Wei, K., Peng, Y., Qu, Z., Pei, Y. and Fang, D. (2018), "A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson's ratio", Int. J. Solids Struct., 150, 255-267. https://doi.org/10.1016/j.ijsolstr.2018.06.018.
  28. Yu, H., Heider, D. and Advani, S. (2015), "Prediction of effective through-thickness thermal conductivity of woven fabric reinforced composites with embedded particles", Composite Struct., 127, 132-140. https://doi.org/10.1016/j.compstruct.2015.03.015.
  29. Zeng, X., Long, A.C., Ashcroft, I. and Potluri, P. (2015), "Fibre architecture design of 3D woven composite with genetic algorithms: a unit cell based optimisation framework and performance assessment", In "Proceedings of The 20th International Conference on Composite Materials, 1-12.
  30. Zhao, Y., Jiao, Y., Song, L., Jiang, Q. and Li, J. (2016), "Influence of fabric architecture and weaving parameter on the thermal conductivities of 3D woven composites", J. Compos. Mater., 51(21), 3041-3051. https://doi.org/10.1177/0021998316681830.
  31. Zhou, X.Y., Gosling, P.D., Pearce, C.J., Ullah, Z. and Kaczmarczyk, L. (2016), "Perturbation-based stochastic multiscale computational homogenization method for woven textile composites", Int. J. Solids Struct., 80, 368-380. https://doi.org/10.1016/j.ijsolstr.2015.09.008.
  32. Zhou, X.Y., Ruan, X., Zhang, S., Xiong, W. and Ullah, Z. (2021), "Design optimization for thermal conductivity of plain-woven textile composites", Compos. Struct., 255, 112830. https://doi.org/10.1016/j.compstruct.2020.112830.
  33. Zhu, J., Ma, T. and Dong, Z. (2020), "Evaluation of optimum mixing conditions for rubberized asphalt mixture containing reclaimed asphalt pavement", Construct. Build. Mater., 234, 117426. https://doi.org/10.1016/j.conbuildmat.2019.117426.