• Title/Summary/Keyword: Fabric Properties

Search Result 1,183, Processing Time 0.028 seconds

Evaluation of Mechanical and Electrical Properties of Bipolar Plate Made of Fiber-reinforced Composites for PEM Fuel Cell (섬유강화 복합재를 사용한 PEM 연료전지 분리판의 전기적.기계적 특성 평가)

  • Lee, Hee-Sub;Ahn, Sung-Hoon;Jeon, Ui-Sik;Ahn, Sang-Yeoul;Ahn, Byung-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.39-46
    • /
    • 2006
  • The fuel cell is one of promising environment-friendly energy sources for the next generation. The bipolar plate is a major component of the PEM fuel cell stack, which takes a large portion of stack cost. In this study, as alternative materials for bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity To achieve desired electrical properties, specimens made with different mixing ratio, processing pressure and temperature were tested. To increase mechanical strength, one or two layers of woven carbon fabric were added to the graphite and resin composite. Thus, the composite material was consisted of three phases: graphite particles, carbon fabric, and epoxy resin. By increasing mixing ratio of graphite, fabricated pressure and process temperature, the electric conductivity of the composite was improved. The results of tensile test showed that the tensile strength of the two-phase graphite composite was about 4MPa, and that of three-phase composite was increased to 57MPa. As surface properties, contact an91e and surface roughness were tested. Graphite composites showed contact angles higher than $90^{\circ}$, which mean low surface energy. The average surface roughness of the composite specimens was $0.96{\mu}m$.

The Effect of Manufacturing Conditions of Coated Yarn Using Anti-Static Thermoplastic Polyurethane M/B on Anti-Static Resistance (대전방지 열가소성폴리우레탄 M/B를 이용한 코팅사 제조 조건이 대전방지성에 미치는 영향)

  • Yedam Jeong;Jieun Kwon;Sunmin Kwon;Seehyeon Chae;Hyunjea Cho;Wooseok Kim;Mikyung Kim;Jongwon Kim
    • Textile Coloration and Finishing
    • /
    • v.35 no.1
    • /
    • pp.20-28
    • /
    • 2023
  • In this study, TPU resin for coating was prepared by varying the mixing ratio of antistatic TPU and recycled TPU to manufacture permanent antistatic materials. The coated yarn was prepared by coating on the nylon yarn, and then the thermal, rheological, mechanical properties and antistatic properties were analyzed. In addition, antistatic properties and durability were confirmed after manufacturing UD fabrics using coated yarns. The mixing ratio of antistatic TPU and recycled TPU was most appropriate at 4:6, and the antistatic property had a surface resistance of 2.20 × 109 Ω and a static charge of 398 V. In the coating process, the coating speed was most appropriate at 0.21 m/s, and the surface resistance of the UD fabric manufactured with the coated yarn manufactured under this condition was 6.80 × 109 Ω and the static charge was 484 V. The UD fabric had a surface resistance of 7.21 × 109 Ω and a static charge of 517 V after washing 10 times, and it was confirmed that the permanent antistatic property was excellent.

Effects of Relative Humidity and Fiber Properties on the Moisture Permeability of Multilayer Fabric Systems (환경 및 섬유 특성이 멀티레이어 직물시스템의 투습성에 미치는 영향)

  • Suhyun Lee;Sohyun Park
    • Fashion & Textile Research Journal
    • /
    • v.25 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • This study aimed to determine the effects of relative humidity and fiber properties on the moisture permeability of multilayer systems by measuring water vapor transmission in the overlapping condition of various fabrics. The results confirmed that the property of the fabric in contact with the humid environment affects the moisture permeability. If the layer facing the humid environment is hydrophobic and the layer facing the dry environment is superhydrophobic, water vapor transmission increases by up to 17.8% compared to the opposite conditions. Comparing the correction values of the water vapor transmission reflecting the thickness of the specimen under the multilayer condition showed that permeability was higher when the hydrophilic or hydrophobic layer was facing the humid environment. The opposite was true from the "push-pull" effect of absorption mechanism. In the case of moisture permeability, the more hydrophilic the surface facing the humid environment, the more permeable that water vapor diffuses and passes through. It was concluded that the "pull-push" effect, in which water vapor diffuses widely through the hydrophilic facing a humid environment and then passes through the hydrophobic layer, contributes to the improvement of permeability. Permeability differed according to the multilayer overlapping condition. When the relative humidity was high, the "pull-push" effect was insignificant. This is caused by water droplets absorption after the partial migration of water due to condensation. These results suggest that the overlapping conditions and properties of fabrics should vary depending on heavy sweating or not.

A study on Mechanical Properties and Seam Puckering of Tencel Fabric ("Tencel"직물의 역학특성과 Seam Puckering에 관한 연구)

  • Shin, Ji-Hye;Park, Chae-Ryun;Cho, Cha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.1
    • /
    • pp.66-77
    • /
    • 1999
  • For this study It was measured the seam puckering based on the mechanical properties of tencel under the proper condition of needlework and machine sewing analyzed the mechanical properties which re influenced to the seam puckering and estimated the seam puckering based on the mechanical properties. The results of this study are as follows : There are three types of the seam puckering for each step which is caused by repeated washing and press. Concerning the seam puckering with the number of washing the more the number of washing is increased the less the seam puckering is decreased. Concerning the mecanical properties of the sample with the seam puckering. The seam puckering is related to LT positively B, 2HB, T, W negatively Among the mechanical properties LT, B, 2HB, T, W are most influenced to the seam puckering. Judging from the result of estimating seam puckering based on mechanical properties the estimate-formula is satisfied in this study.

  • PDF

A Study on The Physical Properties of Textile Materials( I ) -Effect of Blend Ratio of Wool/Polyester Fabrics on the Change of Physical Properties- (의복재료의 물리적 특성에 관한 연구(I) -Wool/polyester 혼방직물의 혼방률에 따른 물성변화-)

  • Kim Tae Hoon;Kim Seung Jin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 1985
  • To determine the change of the mechanical properties of the wool/polyester blend fabrics in proportion to blend ratio, 10 mechanical properties were measured on 6 blend fabrics by KES-F system. Blend ratio on the 6 blend fabrics was increased by $20\%$, and the structure of the fabric were plain, 2/2 twill, respectively. And wearing performances in propoetion to blend ratio on the 6 blend fabrics were investigated. In this experiment. the following conclusions were obtained with the increase of blend ratio of polyester. 1) The values of WT, RT in tensile properties. tensile energy and elongation, and RC in compressional properties were decreased. 2) The values of B, 2HB in bending properties, 2HG. 2HG 5 in shearing properties were increased. 3) Putting on clothes, wearing performance was bad because crumbling of shape and wrinkle were easily made an appearance. Particularly it was remarkably bad as blend ratio of polyester was expressed $60\%$.

  • PDF

Dyeing properties and functionality of silk fabrics dyed with Salicornia bigelovii extracts (함초 추출물을 이용한 견직물의 염색성과 기능성)

  • Kim, Sangyool
    • The Research Journal of the Costume Culture
    • /
    • v.24 no.5
    • /
    • pp.577-587
    • /
    • 2016
  • Natural dye extracted from Salicornia bigelovii was applied to silk fabrics by dip dyeing process. The dyeing properties and the functionalities of the silk fabrics were determined. Factors affecting the dyeing properties such as dyestuff concentration, temperature, time and pH were studied. The colorimetric parameters $L^*$, $a^*$, $b^*$, and H, V/C values were measured to select the optimal mordanting conditions. The color-fastnesses of the dyed and mordanted fabrics were estimated for practical use; in addition, the antibacterial property, ultraviolet protection properties were evaluated. The dyeabilities of silk increased depending on the increasing dye concentration, dyeing time, and dyeing temperature. And optimum dyeing results were achieved when dyeing with 300% (o.w.f.) of dye concentration at $90^{\circ}C$ for 100 minutes and at pH 3. The dyed silk fabrics without mordants produced yellow (Y) color and showed yellow (Y) or green yellow (GY) colors depending on the mordants type. The light fastness of dyed and Al mordanted silk fabrics were found to be excellent, and the drycleaning and rubbing fastness were good. The dyed silk fabrics showed no antibacterial property, but Al and Cu mordanted silk fabrics showed 99.9% reduction rate. The ultraviolet protection properties of the dyed silk fabric was improved. And the ultraviolet protection properties of mordanted samples showed very good ultraviolet protection properties.

Prediction Models for Color Emotion Factors by Visual Texture and Physical Color Properties of Printed Fabrics (직물의 시각적 질감 특성과 물리적 색채 성질에 의한 색채감성요인 예측모델)

  • Lee, An-Rye;Lee, Eun-Ju
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.54-57
    • /
    • 2009
  • This study was aimed to investigate the effects of visual texture on color emotion and to establish prediction models for color emotion by both physical color properties and visual texture characteristics. A variety of fabrics were printed by digital printer according to hue and tone combinations. Subjective sensation was evaluated in terms of visual texture for fabrics printed in gray whereas color emotion for those in chromatically printed. As results, fabric clusters by visual texture showed significant differences in color emotion factors and the differences were clearer for grayish tone fabrics. Prediction models for color emotion factors by both physical color properties and visual texture clusters were proposed as for all fabrics and grayish ones, respectively.

  • PDF

Dyeing and Fastness Properties of Vat Dyes on a Novel Regenerated Cellulosic Fiber

  • Lee Jung Jin;Shim Woo Sub;Kim Ik Soo;Kim Jae PH
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.244-249
    • /
    • 2005
  • enVix is a novel regenerated cellulosic fiber, which is prepared from cellulose diacetate fiber using environmentally friendly manufacturing process. Vat dyeing properties of the enVix were investigated and compared with those ofregular viscose rayon. The enVix exhibited better dyeability than viscose rayon. The colour yields of vat dyes on the enVix were found to be dependent on dyeing temperature as well as the amount of levelling agent and salt. Good build-up and good to excellent fastness properties were obtained on the en Vix fabric.

Mechanical and Thermal Properties of Phenolic Composite reinforced with Hybrid of PAN-based/Rayon-based Carbon Fabrics (PAN계/Rayon계 탄소 직물 하이브리드 복합재료의 역학적 특성 및 열적 특성에 관한 연구)

  • Kim, Jae-Hong;Park, Jong-Kyu;Jung, Kyung-Ho;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.98-101
    • /
    • 2005
  • The mechanical and thermal properties of PAN-based/Rayon-based carbon fabrics interply hybrid composite materials have been studied. Mechanical properties was improved with increasing amount of continuous PAN-based carbon fabrics. The erosion rate was calculated through torch test. The thermal conductivity of hybrid of spun PAN-based/continuous rayon-based carbon fabric is lower than others.

  • PDF

Durable Press Finishing of Silk/Cotton Fabrics with BTCA ( I ) - Effect of Treating Conditions on Physical Properties - (BTCA에 의한 실크/면 교직물의 DP 가공 (I) - 물리적 특성에 미치는 처리 조건의 영향 -)

  • 이문철;조석현
    • Textile Coloration and Finishing
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2002
  • Silk/Cotton fabrics were treated with butanetetracarboxylic acid(BTCA) to improve crease recovery and anti-shrinking properties at various curing temperatures and pH values. We investigated the effects of finishing conditions on add-on of BTCA, bending property(E, 2HB), wrinkle recovery angle, shrinkage, and dyeing properties. The Add-on of BTCA increased with increasing curing temperature and concentration. Crease recovery was improved with decreasing shrinkage. Maximum add-on of BTCA was showed at pH 2.5. In case of dyeing and mercerization, silk side treated with BTCA was more flexible than untreated, whereas cotton side was more stiff. In dyeing after mercerization, B and 2HB values were higher and K/S values were doubled nearly. The hand of fabric improved with decreasing B and 2HB by the BTCA treatment. BTCA treatment after reactive dyeing improved crease recovery, and caused no change of color difference. However, BTCA treatment after reactive dyeing didn't improve crease recovery, whereas B and 2HB were decreased considerably by the treatment.